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  The nucleolus: a raft adrift in the nuclear sea or 
the keystone in nuclear structure ?   

  Abstract:   The nucleolus is a prominent nuclear structure 

that is the site of ribosomal RNA (rRNA) transcription, 

and hence ribosome biogenesis. Cellular demand for ribo-

somes, and hence rRNA, is tightly linked to cell growth and 

the rRNA makes up the majority of all the RNA within a 

cell. To fulfill the cellular demand for rRNA, the ribo somal 

RNA (rDNA) genes are amplified to high copy number and 

transcribed at very high rates. As such, understanding 

the rDNA has profound consequences for our compre-

hension of genome and transcriptional organization in 

cells. In this review, we address the question of whether 

the nucleolus is a raft adrift the sea of nuclear DNA, or 

actively contributes to genome organization. We present 

evidence supporting the idea that the nucleolus, and the 

rDNA contained therein, play more roles in the biology of 

the cell than simply ribosome biogenesis. We propose that 

the nucleolus and the rDNA are central factors in the spa-

tial organization of the genome, and that rapid alterations 

in nucleolar structure in response to changing conditions 

manifest themselves in altered genomic structures that 

have functional consequences. Finally, we discuss some 

predictions that result from the nucleolus having a central 

role in nuclear organization.  

   Keywords:    genome architecture;   nucleolus;   rDNA.  

  a  These authors contributed equally to this work.  

 *Corresponding author: Justin M. O ’ Sullivan, The Liggins Institute, 

The University of Auckland, Auckland, New Zealand, 

e-mail:  justin.osullivan@auckland.ac.nz   

  Dave A.   Pai and     David R.   Engelke:      Department of Biological 

Chemistry , The University of Michigan, Ann Arbor, MI 48109-0600, 

USA 

  Andrew G.   Cridge:      Laboratory for Evolution and Development , 

Biochemistry Department, University of Otago, Dunedin 9054, 

New Zealand 

  Austen R.D.   Ganley:      Institute of Natural and Mathematical Sciences , 

Massey University, Auckland, New Zealand     

  Introduction 

 Nucleoli are the largest non-chromosomal structures 

present within the eukaryotic nucleus. In yeast, the single 

nucleolus occupies approximately a quarter of the total 

nuclear volume in a position that is distal to the spindle 

pole body and in close contact with the nuclear envelope 

 (1 – 3) . In metazoans there can be multiple nucleoli, formed 

around distinct chromosomal loci, that differ from yeast 

in details of morphology but retain the dense staining 

caused by the prodigious production of ribosomes [e.g., 

reviewed in  (4, 5) ]. Nucleoli are organized around the core 

ribosomal RNA (rRNA) gene regions, referred to as nucle-

olus organizer regions (NORs)  (6) . NORs can, in some 

instances, form secondary constrictions on metaphase 

chromosomes during mitosis. 

 In eukaryotes, NORs usually consist of rRNA genes 

that are organized into tandem repeat arrays, collectively 

known as the rDNA (Figure  1  ). rDNA gene copy number 

can vary from a few copies up to tens of thousands of 

copies, depending on the species [see  (7)  for a com-

prehensive table]. For example, the well-characterized 

single rDNA array in  Saccharomyces cerevisiae  consists of 

around 180 copies  (8) , whereas in humans there are five 

rDNA arrays  (9)  that together comprise 300 – 400 copies 

per diploid genome  (10) . There are very few known excep-

tions to the tandem repeat rule: the intracellular human 

pathogen  Pneumocystis carinii   (11)  and  Tetrahymena   (12)  

both appear to have just a single rDNA locus, although 

the latter amplifies this copy in the macronucleus  (12) . 

Nevertheless, the vast majority of eukaryotes characte-

rized to date have the canonical rDNA organization, in 

which the polycistronic rRNA coding region, consisting 

of 18S, 5.8S, and 28S rRNA species (precise nomenclature 

varies somewhat between species), is interspersed with 

an intergenic spacer (IGS) region  (13) . The rDNA genes 

are the most highly transcribed in the genome, with rRNA 

accounting for approximately 80 %  of total RNA in a cell 

 (14, 15) . Despite this, the rDNA is a mosaic of transcribed, 
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typically highly, copies and completely silent copies  (16) . 

The organization of active and silent repeats within the 

linear rDNA array has yet to be determined. Similarly, the 

role of the silent copies has not been completely resolved, 

although they are required for efficient DNA repair in 

budding yeast  (17) . 

 The nucleolus is a domain of the nucleus, rather than 

a body delineated by a membrane or the like. Nevertheless, 

it has a specific structure that, in mammalian nuclei, con-

sists of an inner fibrillar center, a dense fibrillar compo-

nent outside of this, and a granular component surround-

ing this [ (18, 19) , although see  (20) ]. Although this is the 

case in mammalian nuclei, lower eukaryotes, in particular 

several yeast species, only have two distinctly visible com-

ponents: a fibrillar component and granules. Furthermore, 

the fibrillar component in many yeast species is more a col-

lection of strands, rather than a dense body  (5) . In either 

case, it has been shown that at least the non-transcribed 

parts of the rDNA are concentrated in the fibrillar compo-

nent (FC)  (21) . 

 The nucleolus is very protein dense [e.g., reviewed in 

 (4) ] and in humans contains at least 700 different proteins 

 (22) , while being relatively DNA sparse. The nucleolus 

emerges from the complex mixture of proteins that associ-

ate with the rDNA, such as upstream binding factor (UBF) 

 (23) . Creation of the spatial domain of the nucleolus may 

result from high concentrations of binding sites in a small 

volume effectively causing retention of these proteins  (24)  

by preventing movement out of the zone, as shown for ribo-

some movement  (25) . However, rapid shuttling of proteins 

between the nucleolus and nucleus has been observed  (18, 

19) , suggesting that the nucleolus is a dynamic structure. 

 The nucleolus is not just a site of ribosome biogen-

esis: it functions in a myriad of other nuclear processes, 
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 Figure 1    Structure of the eukaryotic rDNA repeat. 

 The structure of a typical eukaryotic rDNA repeat unit is shown in 

the upper part of the figure (not to scale), with the regions encoding 

the three major rRNA species (18S, 5.8S, and 28S) illustrated as 

blue boxes. The inclusion of the 5S rRNA gene (hatched box) within 

the rDNA repeat unit is variable and depends on the organism being 

investigated. The direction of RNA pol-I transcription is indicated, 

as is the known variation in size of the coding region and the IGS 

among eukaryotes. Individual rDNA repeats are usually arranged 

into arrays of tandem as illustrated.    

including cell cycle control [reviewed in  (4) ]. Several 

proteins are known to localize to the nucleolus in a cell 

cycle-specific manner, including several that are associ-

ated with human disease  (26) . Furthermore, nucleolar 

localization of viral proteins involved in viral replication, 

including HIV, appears to be necessary for replication  (19) . 

Additionally, nucleolar structure changes in response 

to both environmental conditions and the cell cycle  (18, 

26) . Such structural alterations, as well as alterations in 

the numbers of rDNA repeats, would relieve or exacerbate 

the retention of proteins sequestered in the nucleolus as 

a result of changes in the spatial clustering of binding 

sites. Strikingly, several non-coding RNA transcripts from 

the rDNA IGS appear to bind and sequester proteins in 

the nucleolus, and are regulated by stress  (27) . Given its 

dynamic nature, and the central role it plays in respond-

ing to cellular and environmental challenges, we hypothe-

size that the nucleolus has a direct role in coordinating 

nuclear structural organization.  

  The nucleolus as an organizer 
of genome structure 
 The nucleolus can contribute to nuclear organization 

through the sequestration and release of proteins that then, 

directly or indirectly, affect the organization of the nucleus. 

However, for the remainder of this review we are going to 

consider the issues surrounding the possibility that the 

nucleolus plays a direct role in the regulation of genome 

structure and how this might be achieved. In this context, 

we refer to genome structure as the spatial organization of 

the genome within the nucleus, thus this form of organiza-

tion focuses on the DNA, although obviously all the atten-

dant proteins and other factors are also part of this. 

 There is growing evidence that the genome takes on 

a specific structural arrangement within the nucleus. In 

human cells, different chromosomes are found to occupy 

chromosome  ‘ territories ’ , which have different positions 

in different cell types  (28, 29) . Genes are also observed to 

inhabit specific locations in the nucleus  (3) . Gene loops, 

that bring linearly distant enhancers in close spatial prox-

imity to promoters, are also thought to be important for 

regulation of gene expression [e.g.,  (30 – 33) ]. Recently 

developed techniques derived from proximity-based liga-

tion  (34 – 36) , such as genome conformation capture (GCC) 

 (37)  and Hi-C  (38) , have been developed to experimentally 

determine global genome structure. Although extremely 

powerful, these techni ques suffer from limitations when 

it comes to aligning sequences from repetitive elements. 
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Essentially because repetitive elements cannot be posi-

tioned to a unique position, they provide potentially con-

fusing information in proximity-based ligation assays 

and are typically ignored  (38 – 40) . However, the rDNA is 

a special case and useful information can be obtained by 

collapsing the rDNA sequences to a single locus  (37, 41, 42) . 

 Computational-based approaches, utilizing proxim-

ity-ligation data and biophysical characteristics, have 

been taken to model global genome structure [e.g.,  (38, 40, 

43, 44) ]. Interestingly, few restraints are required to impart 

a crude order on  in silico  polymer-based reconstructions of 

the budding yeast nucleus  (43, 44) . However, one restraint 

that is required is the positioning of the nucleolus oppo-

site to the spindle pole body  (43) , suggesting the nucleo-

lus is a significant landmark for spatial organization of the 

genome. 

 Nucleolar localization of rDNA has been shown to 

influence the organization of other genomic loci in the 

malaria parasite,  Plasmodium falciparum   (45) . Despite 

this, a structured nucleolus is not essential for nuclear 

function in yeast, as the rDNA genes can be deleted from 

their chromosomal locus and replaced with plasmid-

encoded copies  (46) . These extra-chromosomally encoded 

rDNA genes form multiple, tiny dispersed nucleoli  (47) , 

and the growth of these strains is compromised. However, 

it remains unknown whether the growth defects stem from 

disruption of nuclear organization, or from attenuated 

rRNA transcription/processing  (46) . Nucleolar structure 

is also disrupted when yeast are forced to transcribe the 

chromosomal rDNA repeats with RNA polymerase (RNAP) 

II, rather than RNAP I  (48) . The entire yeast rDNA array 

can be shifted to another location within the genome, but 

in this case only minor phenotypic changes are observed, 

despite the nucleolus changing its position in the nucleus 

 (49) . This is consistent with a limited amount of published 

data that show that specific rDNA:non-rDNA interactions 

are sequence specific and independent of the chromo-

somal position of the non-rDNA locus  (42) . Thus, more 

work is required to deduce the effects of changes in nucle-

olar position on genome structure and function. 

 If the nucleolus directly regulates nuclear structure 

then it stands to reason that interactions between the 

rDNA repeats and other non-nucleolar loci are central to 

this. This is borne out experimentally in budding yeast 

where a majority of DNA-DNA interactions involve the 

rDNA  (37) . Although it can be argued that this interpreta-

tion is simplistic and does not take into account the copy 

number of the rDNA, any interactions between rDNA and 

non-rDNA loci are candidates for interactions by which 

the nucleolus shapes genome organization. These interac-

tions should involve rDNA loci that are directly accessible 

from the nucleoplasm and are not protected by being 

internalized within the nucleolar structure. 

 The division of rDNA units into highly transcribed 

copies and completely silenced copies may reflect a func-

tional distinction between units buried in the nucleolar 

interior and those located at the nuclear-nucleolar inter-

face, respectively (T. Kobayashi, personal communication). 

Although it is almost certain that a main driver for nucleolar 

organization is the centralization of massive biosynthesis 

of ribosomes, we speculate that the tandem repeat organi-

zation of eukaryotic rDNA genes also enables the conser-

vation of contacts at the nuclear:nucleolar boundary while 

still maintaining dedicated transcription units within the 

nucleolus. Such a system would allow the flexible assign-

ment of rDNA repeats to the different functional categories: 

transcription, repair, replication, and structural associa-

tions, the latter having hitherto largely gone unrecognized. 

Therefore, the maintenance in eukaryotes of rDNA repeats 

with identical sequences [notably the non-coding regions 

 (50) ], at a much greater copy number than is needed for 

transcription alone, may ultimately stem from the ability of 

this system to seamlessly replace one repeat with another, 

ensuring that critical functions are maintained.  

  Transcription and nucleolus 
directed organization 
 The rDNA is not transcriptionally homogeneous; instead, 

all three classes of RNA polymerase are present in the 

nucleolus, in at least some organisms. Aside from RNAP 

I transcription, RNAP II transcription appears to be wide-

spread in eukaryote rDNA  (27, 51 – 55) . Furthermore, RNAP 

III-transcribed 5S rDNA genes are located within the rDNA 

repeat in several species, including yeast [Figure 1;  (56) ]. 

Moreover, around 30  s mall  ī nterspersed  n uclear  ē lement 

(SINE) retrotransposons that derive from RNAP III-tran-

scribed genes are found scattered throughout the human 

rDNA IGS  (57) . This opens up the question as to the effect 

of this transcriptional heterogeneity on the spatial organi-

zation of the nucleolus/nucleus. 

 Transcription-induced clustering represents a simple 

mechanism for spatial genome organization  (58 – 60) . 

Thus, polymerase class-dependent association of active 

or primed promoters in the rDNA may contribute to the 

coordination of nuclear-nucleolar structure. In support 

of this idea, structures consistent with RNAP I transcrip-

tion factories involving rDNA repeats have been observed 

in metazoan cells  (60) . Furthermore, RNAP III forms foci 

within the nucleoplasm, and not the nucleoli, of human 
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cells, although it is possible that this is the result of SINE 

transcription  (61) . Transcription by all three eukaryotic 

RNA polymerases on overlapping regions of the rDNA 

repeat complicates this picture. 

 The simplest explanation for the overlapping poly-

merase activities within rDNA repeats is that the different 

RNA polymerase activities are temporally and spatially 

separated. This is supported by evidence that suggests a 

reciprocal relationship between RNAP I and II transcrip-

tion in the rDNA  (62, 63) . Thus, the presence of rDNA 

repeats on the nucleus/nucleolus interface may free them 

up to be transcribed by RNAP II and/or III. However, in 

a yeast strain where rDNA repeat number is reduced to 

the extent that most copies are likely to be transcribed by 

RNAP I  (64) , RNAP II transcription is also high  (51) . This 

suggests that transcription by these two polymerases is 

not mutually exclusive. 

 In the case of RNAP I and RNAP III, it is clear that the 

transcription units can co-exist. Not only are the 5S rRNA 

genes and 35S rRNA genes (transcribed by RNAP III and I, 

respectively) interspersed in the linear repeats but there 

is also substantial evidence in the literature that 5S rRNA 

genes are associated with nucleoli even when located at 

distant sites in the linear genome (see below). Thus, the 

dynamics of rDNA repeat transcription is an important 

area for future research.  

  The nucleolus and RNAP III decoded 
genes 
 The spatial organization of the 5S rDNA genes is one of 

the clearest examples of the nucleolus affecting nuclear 

organization. Whereas in  S. cerevisiae  the 5S rDNA are 

located with the large rDNA repeats, in most eukaryotes 

they are not, and instead are present either as one or more 

clusters of repeats (e.g.,  Drosophila melanogaster , chicken, 

 Arabidopsis thaliana , and human), in other repeat clusters 

(e.g., crustaceans and dinoflagellates), or entirely linearly 

dispersed (e.g.,  Neurospora crassa  and  Schizosaccharomy-

ces pombe )  (56, 65 – 70) . However, these differences in the 

linear organization of the 5S genes between species belie 

commonalities in their spatial localization. For example, in 

mice ectopic 5S rDNA gene sequences have been shown to 

promote nucleolar localization  (71) . Similarly, in humans, 

one of the transcribed, linear clusters of 5S genes on chro-

mosome I was shown to localize to a perinucleolar com-

partment  (72) . Moreover, the linearly dispersed 5S genes in 

many other eukaryotes have been shown to co-localize with 

nucleoli in three dimensions  (73) , suggesting that there are 

benefits to co-localizing the 5S genes with the other riboso-

mal genes. This is strong evidence for the nucleolus playing 

a direct role in the spatial organization of the nucleus. 

 The co-localization of RNAP III decoded loci with nucle-

oli is not restricted to the 5S rDNA  –  tRNA genes also show 

interesting patterns of spatial organization. Eukaryotic 

tRNA genes are generally dispersed throughout the linear 

genomes, although in rare cases there are isolated linear 

clusters of tRNA genes.  Xenopus laevis  oocytes have devel-

opmentally regulated tRNA genes that are found in clusters 

 (74) , and multiple clusters of tRNA genes in  S. pombe  are 

located within the centromeric heterochromatin  (73, 75, 76) . 

They are also frequent sites of genomic rearrangements 

 (77, 78) . In  S. cerevisiae , both microscopy and crosslinking 

proximity analysis show that tRNA genes cluster together 

and co-localize with the nucleolus  (37, 42, 79 – 81) . In addi-

tion, a smaller cluster of tRNA genes has also been identi-

fied at the centromere of  S. cerevisiae   (40, 43) , consistent 

with the observation that the tRNA genes in  S. pombe  are 

primarily clustered at the centromere at a position offset 

from the nucleolus  (82) . As previously noted for 5S rDNA 

sequences, yeast tRNA coding regions confer interaction 

specificity with the nucleolus  (42) , indicating that position 

alone is insufficient to explain this phenomenon. 

 Little is known about the three-dimensional organi-

zation of tRNA genes in most eukaryotes, however, and 

whether they co-localize with nucleoli. This is impor-

tant to determine, as metazoan nuclei can be 100 times 

larger than yeast but have only 2 – 3 times as many tRNA 

genes  (83) . Thus, there is a significantly greater structural 

problem to overcome, and the relative effect of tRNA gene 

clustering on overall genome organization will be much 

less. In this context, if RNAP III transcription units are 

key components for spatial organization, a significantly 

more frequent DNA element would be needed in complex 

eukaryotes. In this context, it is interesting to consider that 

SINEs, retrotransposons derived from RNAP III transcripts 

(usually tRNA and 7SL RNA), are found in great quantities 

in large eukaryotic genomes  (84 – 86) . There is evidence 

that SINEs can form clusters in mammalian nuclei  (87, 88)  

and substantial evidence that at least some SINEs bind 

RNAP III complex components  in vivo   (89) . It will be inter-

esting to test whether some subset of these SINE clusters 

co-localize with nucleoli, especially in light of the finding 

that  Alu  SINEs are processed in the nucleolus  (90) . 

 By definition, rDNA:non-rDNA interactions must 

involve interplay between different loci, but it need not be 

direct and may involve RNA, proteins or other factors (e.g., 

epigenetic modifications) that facilitate either directed or 

self-assembled interactions. Irrespective of how the asso-

ciations are stabilized, they must be flexible enough to 
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allow reassignment of the rDNA repeat to another func-

tion without interfering with the primary function of the 

nucleolus  –  ribosome production. A simple model to 

explain the origin of these interactions is that the act of 

transcription or transcriptional regulation is responsible 

for interaction formation and/or maintenance. This is 

consistent with polymerase class-dependent association 

of different regions of the rDNA, and more generally with 

the idea of transcription factories. However, in the yeast 

strain where all the rDNA repeats are transcriptionally 

active due to enforced reductions in copy number, little or 

no phenotype is observed  (17) . It is possible that interac-

tions with the rDNA may function to position non-nucle-

olar loci during nuclear division  (91) , when the rDNA are 

transcriptionally or replicatively inactive and accessible to 

other factors. In this case, transcription would not be the 

sole driver of interactions that involve the rDNA repeats.  

  The nucleolus and heterochromatin 
 The nucleolus appears to influence the chromatin struc-

ture of the DNA that surrounds it. In metazoans, the nucle-

olus is commonly observed to be surrounded by shell of 

late-replicating heterochromatin. Similarly, tephritids 

(fruit flies) and other dipterans (true flies) also exhibit 

preferential associations of the rDNA with heterochroma-

tin-rich chromosomes  (92) . In  Drosophila , there appears to 

be a direct relationship between the nucleolus and non-

rDNA heterochromatin  (93, 94) . Furthermore, nucleolar 

association seems to be an important factor to maintain 

the heterochromatic state of the inactive human X chro-

mosome  (95) , with the Barr body originally being known 

as the  ‘ nucleolar satellite ’   (96) . Analysis of nucleolus-

associated chromatin domains (NADs) in two human cell 

lines (i.e., HeLa and HT1080) identified satellite repeats as 

being the major components of the NADs  (97) . Repetitive 

elements have also been implicated as forming part of the 

NAD in yeast  (98) . 

 Overlap between some metazoan NADs and reported 

lamina-associated domains suggests that specific 

genomic regions could alternate between associating with 

the nucleolus and the nuclear periphery, either in differ-

ent cells or at different times  (97, 99) . The regulation of 

this recruitment would necessarily affect the organization 

of the remainder of the genome too. However, large-scale 

relocations are not a necessity if relative long-range posi-

tioning can be maintained through alterations to the com-

paction levels of intervening regions, rather than simply 

by physical relocation of the DNA. In effect, some contacts 

can be broken whereas others are maintained. However, 

direct recruitment of non-rDNA loci to the nucleolar 

boundary remains to be demonstrated. Therefore, regula-

tion of these interactions in response to specific signals or 

pathways is still a hypothesis that requires testing.  

  Do bacteria have nucleoli and do 
they also function to organize the 
nucleoid ?  
 It has traditionally been thought that bacteria lack the 

equivalent of a nucleolus as their repetitive ribosomal 

DNA genes are organized as dispersed repeats. However, 

it is clear that the bacterial nucleoid is structured 

 (100 – 108) , and recent evidence suggests that the rRNA 

genes in  Escherichia coli  may be transcribed in specific 

foci in the cell, opening up the idea that bacteria contain 

a nucleolus-like structure  (109, 110)  to facilitate recycling 

of RNA polymerase and coordination of ribosome assem-

bly  (111) . 

 The different copies of bacterial ribosomal RNA 

genes, including the spacer regions, have high levels of 

sequence similarity. This finding was unexpected given 

the apparent dispersal of these genes in the genome. It 

has been proposed that sequence similarity is maintained 

through a process of gene conversion  (112) . Therefore, 

putative bacterial nucleoli may serve not only to optimize 

rRNA transcription and hence growth  (111)  but also to jux-

tapose ribosomal DNA genes to facilitate gene conversion 

between the disparate copies. 

 Whether the bacterial equivalent of a nucleolus actu-

ally exists is an important area for future study as it will 

shed light on critical aspects of bacterial growth rate regu-

lation  (111) .  

  Conclusion 
 Accepting that the nucleolus is not simply a raft adrift the 

nuclear landscape, what advantage is there in the nucleolus 

controlling nuclear structure ?  We contend that the answer 

lies in the central position that ribosomes have within cel-

lular metabolism (Figure  2  ). Stresses of all kinds affect ribo-

some activity [e.g., reviewed in  (113) ], the production of ribo-

somes, and consequently the nucleolus itself. Responses to 

stress [e.g., reviewed in  (114) ] may sometimes involve gross 

alterations to nucleolar structure [e.g.,  (115) ]. These altera-

tions have been related to the release and stabilization of 
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proteins from the nucleolus [e.g.,  (115)  and reviewed in 

 (114) ]; therefore, it is likely that alterations to the NADs 

associated with the nucleolar boundary also occur during 

stress response, but direct evidence for this is lacking. Our 

hypothesis predicts that such alterations occur and cause 

stress-related alterations to the associated genes, and these 

events are part of how the stress response is relayed to 

appropriate transcriptional networks outside the nucleolus 

(Figure 2). Thus, nucleolar structure acts as an intermediary 

between the genomic structural network that coordinates 

transcription, and the cytoplasmic translational network 

(Figure 2). The fact that regions of the nucleolus are acted 

on by the three different polymerases supports the sensory 

role of the rDNA. This model is conceptually similar to the 

rDNA theory of aging proposed by Kobayashi  (116) . In this 

theory, the repetitive nature of the rDNA makes it uniquely 

prone to instability, and this instability acts as an early 

warning system for general genomic instability, triggering 

the aging pathway. Therefore, we propose that nucleolar 

structure is the keystone that synchronizes expression and 

cellular responses by linking the distinct genomic and cyto-

solic protein networks within cells.   
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