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  Y RNAs: recent developments  
  Abstract:   Non-coding RNAs have emerged as key regula-

tors in diverse cellular processes. Y RNAs are  ~ 100-nucleo-

tide-long non-coding RNAs that show high conservation 

in metazoans. Human Y RNAs are known to bind to the 

Ro60 and La proteins to form the Ro ribonucleoprotein 

complex. Their main biological function appears to be in 

mediating the initiation of chromosomal DNA replication, 

regulating the autoimmune protein Ro60, and generating 

smaller RNA fragments following cellular stress, although 

the precise molecular mechanisms underlying these func-

tions remain elusive. Here, we aim to review the most 

recent literature on Y RNAs and gain insight into the func-

tion of these intriguing molecules.  
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   Introduction 
 At the turn of the millennium, it became increasingly 

apparent that the role of RNA in cellular processes was 

much more significant than first thought  (1) . There are a 

vast number of distinct families that make up the  ‘ RNA 

world ’   (2) , having diverse roles such as gene silencing, 

intermediates during gene expression, non-protein-

based enzymes, and splicing. Two characteristic features 

of these RNA families are their length and secondary 

structure. 

 Although RNA acts as an intermediary in the  ‘ central 

dogma ’  of gene expression (the expression of genes from 

DNA to RNA, then to protein), the vast majority of cel-

lular RNA is non-coding. Indeed, most of the genome in 

complex organisms is transcribed into non-coding RNA 

rather than protein coding transcripts  (3) . Only 1.5 %  of 

the human genome is protein coding, yet around 80 %  is 

transcribed into RNA  (4) , making non-coding RNA a domi-

nant feature in the cellular landscape. 

 Y RNAs are one such family of non-coding RNAs. They 

were first identified in the early 1980s during investiga-

tions into autoimmune proteins and associated RNAs in 

systemic lupus erythematosus patients  (5, 6) . The four 

Y RNAs, Y1, Y3, Y4, and Y5 (Figure  1  ), are highly evolu-

tionary conserved  (7, 8) , and have been shown to bind to 

a variety of proteins  (9 – 14) . The principal Y RNA-binding 

proteins appear to be Ro60 and La, which when bound to 

Y RNAs give rise to the Ro-RNP (Ro60 ribonucleoprotein) 

complex. 

 The Y RNA  ‘ life cycle ’  begins with the Y RNA, and 

two key genes ( Ro60  and  La ) being transcribed in the 

nucleus. The  Ro60  and  La  transcripts are exported to 

the cytoplasm where they are translated into proteins, 

which are subsequently imported back into the nucleus. 

As RNA polymerase III-controlled transcription of the Y 

RNA is terminated, the newly synthesised transcript asso-

ciates with La, followed by Ro60  (15) . The entire Ro-RNP 

complex is then transported to the cytoplasm. However, 

some Ro-RNP complexes, such as the Y5 RNP, are retained 

in the nucleus  (16) . 

 Several excellent reviews are already available, which 

summarise the discovery and characterisation of Y RNAs 

and their associated proteins  (17 – 19) . Here, we shall review 

three more recent areas of Y RNA biology where there 

have been significant developments over the last 6   years. 

Research into the Y RNAs appears to have centred on, first, 

their involvement in DNA replication; second, the binding 

of Ro60 and associated proteins; and third, the biogen-

esis and function of Y RNA-derived small RNAs. Possible 

avenues of future research are also discussed.  

  The role of Y RNAs in chromosomal 
DNA replication 
 The propagation of life relies on the efficient and timely 

replication of the cell ’ s genetic material. During cell divi-

sion in all organisms, parental DNA gives rise to two iden-

tical daughter strands, each inheriting one original strand 
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from the parent in a semiconservative fashion. In eukary-

otes, chromosomal DNA replication is tightly regulated 

and is closely linked to the cell cycle, occurring in S phase. 

 The current model of DNA replication is already well 

reviewed in the literature  (20, 21) ; however, we will briefly 

summarise key molecular events here to facilitate the 

understanding of the role of Y RNAs in this process later in 

the review. Eukaryotic cells start DNA replication through 

the assembly of the multiprotein pre-replicative complex 

(pre-RC) in the G 
1
  phase of the cell cycle. This is initiated 

with the assembly of the six-subunit, origin recognition 

complex (ORC), which in turn recognises specific sites 

where DNA replication initiation occurs  –  called autono-

mously replicating sequences. The Cdc6 and Cdt1 proteins 

then interact with the ORC and facilitate the recruitment 

of the minichromosome maintenance proteins Mcm2 – 7. 

Together, these proteins form the pre-RC in G 
1
  phase 

nuclei. Activation of the pre-RC and the formation of DNA 

replication forks occurs during the transition to S phase 

and involves a second group of factors. These proteins 

include the two kinases Cdk2 and Cdc7. Other initiation 

factors are then recruited, including Cdc45, Mcm10, the 

GINS complex and replication protein A. Origin DNA is 

then unwound, and the three DNA polymerases (DNA pol 

 α , DNA pol  δ , and DNA pol ε) are recruited and commence 

replication. 

 Early studies that investigated the biochemistry of 

DNA replication used cell fusion experiments, such as 

those famously conducted by Rao and Johnson in 1970 

 (22) . Using this technique, it was shown that S-phase cells 

contain factors that could induce G 
1
 , but not G 

2
  phase 

nuclei, to prematurely trigger DNA replication. More 

recently, the development and optimisation of a human 

cell-free system to study DNA replication was established, 

which has resulted in further replication factors being 

uncovered  (23, 24) . In this cell-free system, isolated cell 

cycle-arrested template nuclei synchronised in late G 
1
  

phase are prepared, which are licensed to replicate, but 

lack active DNA replication forks. Then, by adding cyto-

solic extracts from proliferating cells containing initia-

tion factors or combinations of specific cellular fractions, 

novel DNA replication factors can be identified by seeing 

if arrested nuclei can then initiate DNA replication  (24) . 

 Using this cell-free system, Krude and colleagues  (25)  

identified the non-coding Y RNAs as essential factors for 

chromosomal DNA replication. When the cytosolic extract 

from actively proliferating cells was fractionated by anion 

exchange chromatography, this gave rise to two essential 

fractions called QA and QB. QB was further separated into 

fractions ArFT and ArE. Fractions QA, ArFT, and ArE were 

sufficient to initiate DNA replication when added to tem-

plate nuclei. Surprisingly, fraction ArE was found to be 

 Figure 1    Y RNAs, associated binding proteins, and regions involved in DNA replication. 

 All Y RNAs have at least two main stems separated by a large internal pyrimidine-rich loop. The most conserved region between the Y RNAs 

is the stem at the 3 ′ /5 ′  end. This is where the Ro60 protein binds, and involves the important cytosine bulge that is crucial for this interac-

tion  (13) . Both enzymatic cleavage and chemical modification experiments have been used to determine these structures shown  (9, 70) . 

The region implicated in chromosomal DNA replication is boxed in blue  (26) . Nucleolin binds to the large internal loop structure  (13, 14, 30) ; 

however, the binding sites of DNA replication associated proteins Cdt1 and Cdc6 are still to be established. Y RNAs have a 3 ′  poly (U) tail 

and a 5 ′  triphosphorylated guanine residue (pppG), except for Y5, which has pppA  (12) . Figure adapted from ref.  (68) .    
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composed mainly of nucleic acids rather than proteins, 

and it was from this fraction that Y RNAs were purified. 

The QA and ArFt fractions alone were not sufficient to sig-

nificantly drive DNA replication in isolated nuclei from 

human somatic cells, with only 15 %  of nuclei replicat-

ing in the presence of these two fractions  (25) . However, 

when the purified Y RNAs were added along with these 

two protein fractions, the proportion of replicating nuclei 

increased in a dose-dependent manner to 50 %   (25) . Fur-

thermore, targeted depletion of Y RNAs from the cytosolic 

extract inhibited DNA replication. A degree of functional 

redundancy with regards to the Y RNAs was found in 

this system as addition of any of the four Y RNAs to the 

depleted extract was sufficient to reinstate DNA replica-

tion. This requirement for Y RNAs for DNA replication 

was also seen in mouse cell nuclei, where interestingly, 

human Y RNAs could also initiate mouse DNA replication, 

indicating that these factors are evolutionary conserved. 

Non-vertebrate Y RNAs could not reconstitute DNA repli-

cation in vertebrate systems  (26) . 

 Importantly, the structure of the Y RNAs was shown 

not to be the contributing factor that initiated DNA repli-

cation  (25) . Instead, a conserved double-stranded 9-base-

pair motif sequence in the upper stem of the Y RNAs 

(Figure 1) identified in screens of hY1 mutants was suffi-

cient to drive DNA replication in the presence of protein 

fractions QA and ArFt  (26) . This motif was found to have 

a consensus sequence of 5 ′ -GUAGUGGG-3 ′  on the 5 ′  strand 

and 5 ′ -CCCACUGCU-3 ′  on the 3 ′  strand. This motif was not 

found in non-vertebrate Y RNAs. The addition of this dou-

ble-stranded sequence alone was sufficient to drive DNA 

replication without the requirement of the other protein 

binding domains of the Y RNA (again, in the presence 

of QA and ArFt). Interestingly, the same results were not 

observed with the addition of this sequence in DNA from. 

 One of the major functions of Y RNAs is the ability to 

bind the Ro60 protein, which has a role in RNA quality 

control  (9, 10) . Ro60 binds the lower stem of the Y RNA 

(Figure 1). Another protein called La binds the 3 ′  poly-

uridine tail  (12, 13)  and other proteins such as Nucleolin 

bind to the large internal loop structure of the Y RNA  (13, 

14) . Langley and colleagues  (27)  showed that none of the 

associated Y RNA-binding proteins were required for DNA 

replication and that addition of any of these proteins did 

not affect the percentage of actively replicating nuclei in 

the cell-free system. It was found through real-time PCR 

that around 50 %  of cellular Y RNAs were not bound by 

Ro60/La/Nucleolin  (27) , and it was argued that it is the 

non-protein-bound portion of Y RNAs that have a role in 

DNA replication, whereas the Ro60/La/Nucleolin-bound 

Y RNAs carry out distinct functions such as scavenging for 

misfolded RNAs. Interestingly, other groups have shown 

through Northern blot-based studies that around 90 %  of 

cellular Y RNAs are bound by Ro60  (15, 28) . This discrep-

ancy in the literature remains to be clarified. 

 To investigate exactly how Y RNAs facilitate chromo-

somal DNA replication, Krude and colleagues  (29)  

degraded Y1 and Y3 RNA at different time points of the 

cell cycle and monitored replication track extension rate 

(or the rate at which nascent DNA is polymerised). They 

found that Y RNAs are required for the establishment and 

initiation of DNA replication forks, but are not required for 

the elongation of actively replicating DNA. Additionally, 

the stability of the DNA replication fork was not affected 

by depleting the Y RNA population. The reduction in the 

amount of single-stranded nascent DNA by degrading Y3 

RNA could be negated by the addition of Y1 RNA  –  further 

supporting the functional redundancy of Y RNAs in this 

process. In another study, using fluorescently labelled 

Y RNAs, it was shown that Y RNAs act in a  ‘ catch and 

release ’  mechanism whereby Y RNAs associate with the 

unreplicated euchromatin in the late G 
1
  phase of the cell 

cycle, and are displaced once initiation has taken place 

 (30) . Around 20 – 70 %  of hYRNAs associate with nuclei 

in G 
1
  phase cells, whereas only 4 – 10 %  associate in G 

2
 . It 

was further shown that hY1, hY3, and hY4 co-localise with 

each other on euchromatin sites, but not with hY5, which 

was enriched in nucleoli. Although it was previously 

shown that the upper stem region alone was sufficient 

to reconstitute DNA replication in template nuclei  (26) , it 

was demonstrated that the loop domain of the Y RNAs was 

required for targeting Y RNAs specifically to euchromatic 

sites. Y RNA mutants where only the upper stem main-

tained a wild-type sequence showed non-specific site 

binding across the nucleus, including heterochromatic 

regions  (30) . 

 Human Y RNAs appear to associate with DNA replica-

tion factors. This was demonstrated by conducting RNA 

pull-down assays where agarose beads are coupled to the 

3 ′  termini of the Y RNA  (30) . All four Y RNAs interact with 

members of the origin recognition complex (ORC 2 and 3 

interacted with hY1, 3, 4, and 5 and ORC 4 and 6 interacted 

with hY1, 3 and 5 only). Furthermore, Cdt1, Cdc6, and the 

DNA unwinding protein DUE-B all interacted with the Y 

RNAs. None of the proteins associated with DNA replica-

tion elongation such as Mcm2 – 7, CMG, and the DNA poly-

merases bound to the Y RNAs, supporting earlier work 

that these non-coding RNAs are specifically involved in 

the initiation stage of replication  (29, 30) . 

 Finally, the most recent work with regards to Y RNAs 

and chromosomal DNA replication showed that the 

Y RNAs only act as licensing factors after the midblastula 
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transition (MBT) stage of development  (31)  and not before. 

Using inhibitory morpholino nucleotides, it was demon-

strated that Y RNAs are not needed for DNA replication in 

 Xenopus  and zebrafish embryos and egg extracts before 

MBT. After this stage, Y RNA-specific morpholino nucle-

otide-treated embryos died shortly before gastrulation. 

The lack of requirement for Y RNAs to play a role in DNA 

replication before MBT may facilitate the need to replicate 

the cell ’ s DNA rapidly during early developmental stages. 

After this developmental stage, DNA replication takes sig-

nificantly longer  –  such as in post-MBT cells.  

  Y RNAs and associated proteins 
 All human Y RNAs can bind to both the Ro60 and La 

proteins  (6, 9, 12) . La carries out a multitude of different 

functions within the cell, such as the stabilisation of RNA 

polymerase III transcripts and the processing of tRNAs, 

which has been reviewed elsewhere  (19) . There is mount-

ing evidence that Ro60 is involved in RNA processing and 

quality control  (10, 18, 32 – 36) . 

 In 2005, the  ‘ steric occlusion ’  model was put forward, 

suggesting that Y RNAs block the binding of variant or 

misfolded ncRNAs to Ro60; Y RNAs bind to the outer 

surface of the Ro60 protein, while ncRNAs interact with an 

overlapping region on the outer surface, as well as in the 

central cavity  (36 – 38) . In 2007, Hogg and Collins contested 

this model, hypothesising that Y RNAs actually recruit 

misfolded or variant ncRNAs to Ro-RNP complexes. This 

group went on to show that Y5 interacts with 5S ribosomal 

RNA (rRNA) through the ribosomal protein L5 and that Y5 

prefers ectopically expressed variant 5S rRNA over endog-

enously expressed wild-type 5S rRNA  (35) . It is possible, 

and indeed the group themselves propose, that both of 

these models are true under different circumstances. 

 A third hypothesis is that Y RNAs modulate the inter-

action of Ro60 with ncRNAs by altering Ro60 localisation. 

Sim et al.  (39)  used chimeric proteins, produced by combin-

ing bacterial Ro60 domains with mouse Ro60 domains, to 

show that vertebrate Ro60 contains a nuclear localisation 

signal in helices 1 – 12 of the HEAT domain. This domain 

overlaps the region that interacts with Y RNAs. During 

UV or oxidative stress, the mouse Ro60 protein relocates 

to the nucleus  (34, 39) , while the bacterial Ro60 protein 

remains partially nuclear and partially cytoplasmic  (39) . 

Targeted knockdown of mouse Y3 RNA by siRNAs results 

in the relocation of Ro60 to the nucleus in the absence of 

stress. However, when mY1 is degraded after siRNA knock-

down, the resulting fragments still interact with Ro60 and 

this complex remains cytoplasmic  (39) . Mutating the Y 

RNA-binding region of the mouse Ro60 protein also leads 

to nuclear accumulation in the absence of stress  (39) . This 

indicates that interacting mouse Y RNAs retain Ro60 in the 

cytoplasm. In human cells, the Y5 RNA is reported to be 

primarily nuclear  (16) . It would be interesting to examine 

the interaction between hY5 RNA and human Ro60 under 

stress conditions, as this RNA may have evolved to aid 

Ro60 in its nuclear function. 

 It has been demonstrated that the internal loop region 

of each Y RNA interacts with a different set of proteins, 

forming an RNP with a unique function  (35, 40, 41) . For 

example, the mouse Y3-Ro60 complex associates with 

zipcode-binding protein 1 (ZBP1), while the mY1-Ro60 

complex does not  (42) . ZBP1 contains a chromosome 

region maintenance 1 (CRM1)-dependent signal for 

nuclear export  (43, 44) , which could explain why mY3-

Ro60 is exported from the nucleus by a CRM1-dependent 

exporter, while mY1-Ro60 export is not CRM1-dependent 

 (42, 45, 46) . As well as alternative export pathways leading 

to possible differences in location, Y RNAs also have an 

overlapping but distinct distribution at euchromatic sites 

in the nucleus  (30) . These results further indicate that 

each Y RNA has a localisation-dependent function, as, 

although there is redundancy in the function of all ver-

tebrate Y RNAs in chromosomal replication, each Y RNA 

may be involved in the initiation of replication at a par-

ticular subset of sites  (30) . Hogg and Collins  (35)  proposed 

that each of the Y RNAs in humans was capable of recruit-

ing a different group of defective RNAs indirectly through 

interactions with bridging proteins, highlighting poten-

tially specialised functions in RNA quality control as well 

as chromosomal replication. 

 A large number of proteins have recently been found 

to interact with Y RNAs, including many that are involved 

in chromosomal replication  (30, 47, 48) . Examining these 

RNA-protein interactions more closely should lead to 

further characterisation of their function in chromosomal 

replication and in other cellular processes. This in turn 

would enable a better understanding of the extent of 

Ro60- and La-free Y RNA function.  

  Y RNA-derived small RNAs 
 A fascinating feature of the Ro-RNPs is that their RNA 

component is altered during apoptosis. Shorter RNA 

fragments are rapidly generated during apoptosis from 

all human Y RNAs in a caspase-dependent manner  (49) . 

There are two kinds of shorter fragments: the smaller 
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fragment is around 22 – 25 nucleotides and the longer frag-

ment is around 31 nucleotides  (49) . Interestingly, these Y 

RNA-derived small RNAs (YsRNAs) are still bound to pro-

teins: the longer fragment was immunoprecipitated with 

both Ro60 and La, while the shorter fragment was bound 

only to Ro60 but not La  (49) . Although these YsRNAs were 

first reported in 1999, it took more than 10   years to follow 

up on these curious molecules. The most likely reasons for 

this long wait are the uniqueness of these short fragments 

and the technical difficulty to work with such short RNA 

molecules. 

 Coincidentally, the last decade saw a remarkable 

growth of interest in small non-coding RNAs, mainly 

because of the discovery of microRNAs (miRNAs)  (50 – 52) . 

miRNAs in animals are mainly 22 nucleotides and are gen-

erated from a longer precursor RNA (pre-miRNA) with a 

characteristic stem-loop structure. The conserved RNa-

seIII family member Dicer recognises the stem as a par-

tially double-stranded RNA and cleaves it, generating a 

20mer duplex RNA with two-nucleotide overhangs at each 

3 ′  end  (53) . One of the strands is incorporated into an Ago2 

complex and is called the mature miRNA, and the other 

strand, often called the miRNA*, is degraded. The mature 

miRNA can recognise specific mRNAs on the basis of 

sequence complementarity and therefore guides the Ago2 

complex to target mRNAs. This results in downregulation 

of the target mRNAs ’  expression, and it is now generally 

accepted that miRNAs play an important role in develop-

ment and many diseases  (53) . 

 In addition to the discovery of miRNAs, the arrival of 

next-generation sequencing (NGS) played an important 

role in the characterisation of YsRNAs. NGS allowed the 

identification and profiling of small RNAs on a previ-

ously unprecedented scale and as its cost was falling, it 

was applied to sequence small RNAs by more and more 

groups. One such study sequenced small RNAs in precur-

sor B cells of acute lymphoblastic leukaemia patients and 

in normal CD34  +   cells and found 24-nucleotide fragments 

from the 3 ′  end of Y RNAs  (54) . However, this study did 

not realise that these sequences were Y RNA fragments, as 

there were many thousands of other sequences. Because 

these sequences formed a stem-loop structure with the 

flanking genomic sequences, they were predicted to be 

miRNAs and were named miR-1975 (generated from Y5) 

and miR-1979 (generated from Y3). In the following year, 

Meiri et al.  (55)  also found miR-1975 and miR-1979 in 

several solid tumours; however, they noticed that these 

sequences were derived from Y RNAs. At that time, it was 

already reported that other non-coding RNAs can be pro-

cessed by Dicer, producing functional miRNAs including 

tRNAs and snoRNAs  (56, 57) ; therefore, they tested the 

activity of miR-1975 and miR-1979 using the standard lucif-

erase assay  (58) . The test proved to be negative; however, 

a single negative result did not rule out the possibility 

that Y RNAs were processed by Dicer, leading to func-

tional miRNAs. Nevertheless, miR-1975 and miR-1979 were 

removed from miRBase, which is the primary database 

for miRNAs  (59) , as there was not sufficient evidence that 

they were miRNAs. However, the question still remained 

whether Y RNAs can serve as pre-miRNAs and produce 

functional miRNAs  (17) . 

 A recent study focused on this question and first it 

addressed whether the amount of YsRNAs was in the 

range of known miRNAs  (60) . Although, the level of 

YsRNAs is dramatically increased during apoptosis, they 

can be detected in non-apoptotic cells where their level is 

similar to the level of known miRNAs. Next, it was tested 

whether the generation of YsRNAs is dependent on Dicer 

activity. A cell line was used where one of the exons of 

Dicer is deleted, and apoptosis was induced by polyI:C in 

both wild-type and Dicer knockout cells. The level of Y3 

and Y5 sRNAs increased significantly by polyI:C in both 

wild-type and Dicer knockout cells, indicating that Dicer 

is not required for the production of YsRNAs  (60) . Next, 

Ago2 complexes were immunoprecipitated and the pres-

ence of known miRNAs and YsRNAs was investigated by 

Northern blot analysis. miR-21 was readily detected in the 

precipitated complex; however, Y3 and Y5 sRNAs were not 

detectable in the pull-down, demonstrating that YsRNAs 

are not in complex with Ago2. Finally, lysates of polyI:C-

treated cells were separated by anion exchange chromato-

graphy and known miRNAs and YsRNAs were detected in 

the fractions by Northern blot analysis. This experiment 

revealed that Y3 and Y5 sRNAs were in different fractions 

to known miRNAs, which supported the previous result 

that YsRNAs were not in complex with Ago2. On the basis 

of these results  (60) , it can now be concluded that Y RNAs 

do not enter the miRNA pathway and the YsRNA frag-

ments do not act as miRNAs.  

  The future of Y RNA research 
 The RNA  ‘ Zoo ’  within the cell, and the interactions these 

RNAs have with other cellular components, appears to be 

more complex than first thought. Indeed, it is sometimes 

misleading to think of each RNA family as a discrete group 

of molecules, as there can be significant interchange-

ability between groups. For instance, some transfer RNAs 

(tRNAs) and small nucleolar RNAs (snoRNAs) can enter 

small interfering RNA (siRNA)-like pathways  (61, 62) . 
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Further to this, the number of small RNAs derived from 

longer RNA molecules also appears to be a significant and 

emerging field in its own right, with several papers and 

reviews already appearing in this area  (60, 63 – 67) . 

 Although Y RNAs were first identified   >  30    years ago 

 (6) , only a relatively small number of papers have been 

published about their actual biological function, with 

most of the literature documenting their structure, RNA-

protein interactions, and general biochemistry. A major 

biological function of a fraction of Y RNAs appears to be 

in chromosomal DNA replication. As the role of Y RNAs 

in DNA replication does not require Ro60, it is likely that 

Ro60 regulates the availability of Y RNAs to execute this 

function by regulating their stability. Future work should 

focus on the exact molecular mechanism by which Y RNAs 

initiate DNA replication in post-MBT cells. 

 Furthermore, transfection of siRNAs against hY1 

 (25)  and hY3  (68)  into a range of different cells, includ-

ing carcinoma cells (including bladder, prostate, cervical, 

and lung) results in a reduction in cell proliferation. This 

makes Y RNAs promising targets for future pharmacologi-

cal treatments in cancer patients. 

 The appearance of Y RNA-derived sRNAs, and indeed 

similar-sized sRNAs derived from other non-coding RNAs 

in a number of studies  (26, 49, 55, 60) , implies that these 

molecules may support a biological pathway that has yet 

to be uncovered. Y RNA-derived sRNAs may modulate 

gene expression at the transcriptional level in a similar 

fashion to how sRNAs derived from tRNAs modulate 

translation  (65) , and future investigations should try and 

address this hypothesis. Another exciting question is 

how these Y RNA-derived sRNAs are produced. One pos-

sibility is that a specific enzyme cleaves the Y RNAs, pro-

ducing the smaller fragments. However, it is also possi-

ble that the Y RNAs are degraded by non-specific RNases 

and the proteins bound to them protect the regions that 

have been identified as Y RNA-derived sRNAs. In the 

first scenario, it is essential to identify the enzyme that 

cleaves Y RNAs and if the second possibility is true it will 

be important to clarify which proteins protect those spe-

cific regions. 

 Finally, a variety of sRNAs have been sequenced 

in a population of  ‘ shuttle RNAs ’  present in the vesi-

cles released by immune cells  (64) . RNA cleavage prod-

ucts derived from vault RNAs, tRNAs and Y RNAs were 

detected, whereas miRNAs were significantly underrep-

resented in the shuttle RNA population. Y RNAs were 

some of the most abundant RNAs present in the immune 

vesicles, with both 28-nucleotide fragments and full-

length Y RNAs being detected. The similarity by which Y 

RNAs were assimilated into immune cell-derived vesicles 

 (64) , and the nature by which they are selectively pack-

aged into viruses, which was reported previously  (69) , is 

worth noting. Future studies will clarify whether the Y 

RNAs could play a role in sorting of regulatory RNAs into 

these vesicles, in stabilising other RNAs during export, or 

in guiding shuttle RNAs to specific locations in vesicle-

targeted cells  (64) .    
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