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  Neurosteroids and GABAergic signaling in health 
and disease  
     Abstract:   Endogenous neurosteroids such as allopregna-

nolone, allotetrahydrodeoxycorticosterone, and andros-

tanediol are synthesized either  de novo  in the brain from 

cholesterol or are generated from the local metabolism of 

peripherally derived progesterone or corticosterone. Fluctu-

ations in neurosteroid concentrations are important in the 

regulation of a number of physiological responses includ-

ing anxiety and stress, reproductive, and sexual behaviors. 

These effects are mediated in part by the direct binding 

of neurosteroids to  γ -aminobutyric acid type-A receptors 

(GABA 
A
 Rs), resulting in the potentiation of GABA 

A
 R-medi-

ated currents. Extrasynaptic GABA 
A
 Rs containing the  δ  

subunit, which contribute to the tonic conductance, are 

particularly sensitive to low nanomolar concentrations of 

neurosteroids and are likely their preferential target. Con-

sidering the large charge transfer generated by these persis-

tently open channels, even subtle changes in neurosteroid 

concentrations can have a major impact on neuronal excit-

ability. Consequently, aberrant levels of neurosteroids have 

been implicated in numerous disorders, including, but not 

limited to, anxiety, neurodegenerative diseases, alcohol 

abuse, epilepsy, and depression. Here we review the modu-

lation of GABA 
A
 R by neurosteroids and the consequences 

for health and disease.  
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  Introduction 
 The term  neurosteroids  was first introduced in the 1980s 

by Baulieu to describe steroids produced  de novo  in the 

brain from cholesterol; it was later expanded to include 

those derived from the local metabolism of peripherally 

derived steroid precursors such as, progesterone, corticos-

terone, or testosterone  (1 – 3) . Neurosteroids are modula-

tors of aminobutyric acid type A receptors (GABA 
A
 Rs) and 

can induce analgesic, anxiolytic, sedative, anesthetic, and 

anticonvulsant effects  (4, 5) . The ability of neurosteroids 

to modulate GABA 
A
 R function was first shown in 1984 by 

Harrison and Simmonds who demonstrated that alpha-

xalone, a synthetic neuroactive steroid with anesthetic 

properties, potently potentiated GABA 
A
 R currents  (6) . 

This result was repeated shortly afterward with the endo-

genous neurosteroids 5 α -pregnane-3 α -ol-20-one (allopre-

gnanolone) and 5 α -pregnane-3 α ,21-diol-20-one (THDOC) 

 (7) . Fluctuations in the concentration of endogenous 

neurosteroids and changes in GABAergic signaling have 

been implicated in a variety of physiological and patho-

physiological conditions including stress, pregnancy, 

reproductive/sexual behaviors, depression, and epilepsy 

 (8 – 15) . Here we review the neurosteroid-mediated regula-

tion of GABAergic transmission, the effects on neuronal 

excitability, and the implications for health and disease.  

  Neurosteroidogenesis 
 There are three main classes of neurosteroids: the pregnane 

(e.g., allopregnanolone), the sulfated (e.g., dehydroepian-

drosterone sulfate, or DHEAS), and the androstane (e.g., 

androstanediol), which are classified according to their 

structural homology  (9)  (Figure  1  ). The 3- α  hydroxy ring 

A-reduced pregnane steroids, such as allopregnanolone 

and THDOC, are the most potent positive modulators of 

GABA 
A
 Rs and will be the focus of this review whereas; 

the sulfated neurosteroids are often inhibitory and act as 

noncompetitive antagonists at GABA 
A
 Rs  (16) . Allopregna-

nolone and THDOC can be synthesized from cholesterol 

by a series of steroidogenic enzymes [for reviews, see  (2, 5, 

17, 18) ] (Figure 1). Briefly, the key pathways are as follows: 

cholesterol is transported into the inner mitochondrial 

membrane  via  the steroidogenic acute regulatory protein 

(StAR) and translocator protein 18 kDa (TSPO), also known 
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as the peripheral benzodiazepine receptor  (19) . Here, mito-

chondrial cholesterol side-chain cleavage enzyme (cyto-

chrome P450scc) catalyzes a side chain cleavage to convert 

cholesterol into pregnenolone, an important rate-limiting 

step for the production of allopregnanolone and THDOC. 

Pregnenolone is then converted by 3 β -hydroxysteroid 

dehydrogenase (3 β -HSD) into progesterone with further 

metabolism of progesterone by 21 hydroxylase (p450c21), 

yielding deoxycorticosterone. Finally, progesterone and 

deoxycorticosterone are metabolized by 5 α -reductase fol-

lowed by 3 α -hydroxysteroid dehydrogenase (3 α -HSD), to 

yield allopregnanolone and THDOC, respectively. In addi-

tion, androstanediol, another potent positive modulator 

of GABA 
A
 Rs, also utilizes the 5 α -reductase/3 α -HSD meta-

bolic pathway to catalyze its synthesis from testosterone 

 (3, 9)  (Figure 1). 

 The steroidogenic enzymes are not uniformly distri-

buted throughout the brain but are localized in specific 

brain regions and cell types  (20) . Cytochrome p450scc, 

for example, is expressed in both principal neurons and 

glial cells in various brain regions including the amyg-

dala, hypothalamus, thalamus, cortex, and hippocampus 
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 Figure 1    The major biosynthetic pathways in the synthesis of allopregnanolone (3 α ,5 α -tetrahydroprogesterone, 5 α -pregnan-3 α -ol-20-one, 

3 α -hydroxy-5 α -pregnan-20-one, or 5 α 3 α -THPROG), THDOC (allotetrahydrodeoxycorticosterone, 5 α -pregnane-3 α ,21-diol-20-one, 

or 5 α 3 α -THDOC), and androstanediol (5 α -androstane-3 α ,17 β -diol or 3 α -diol). 

 The corresponding neurosteroidogenic enzymes are shown in italics adjacent to each reaction.    
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 (21) . Furthermore, both 5 α -reductase protein and 3 α -HSD 

mRNA have been shown to colocalize in principal neurons 

in the thalamus, striatum, cerebellum, cortex, amygdala, 

and hippocampus, indicating that these are likely sites of 

neurosteroidogenesis  (22) . However, there is limited or no 

expression in interneurons with weak 5 α -reductase/3 α -

HSD expression found only in the granule cells of the 

cerebellum and olfactory bulb  (22) . As neurosteroids are 

produced in the same neurons that express GABA 
A
 Rs, they 

may act in an autocrine as well as a paracrine fashion to 

alter neuronal excitability. Interestingly, p450c21 mRNA 

has so far only been found in the brain stem and at very 

low levels in the cerebellum, suggesting that local meta-

bolism of steroid hormone precursors from the periphery 

might be the prominent pathway for neuronal THDOC syn-

thesis, which coincides with the observation that THDOC 

is not detectable in the brains of adrenalectomized 

animals  (20, 23) . Indeed, because steroid hormones are 

small and lipophilic, peripherally derived hormones from 

the adrenal cortex, placenta, or gonads can readily cross 

the blood-brain barrier and plasma membrane, where 

they can be locally metabolized into neurosteroids  (24) . It 

has also been observed that some steroidogenic enzymes 

are found in more than one subcellular compartment. For 

instance, cytochrome p450c17, an important enzyme in the 

pathway that mediates the conversion of pregnanolone 

into DHEAS and androstenediol, is found in the cell body, 

axon, and dendrites of embryonic basal ganglia and cer-

ebellum neurons  (21, 25) . Therefore, neurosteroids may 

be synthesized at some distance away from the cell body, 

and thus, it can by hypothesized that distantly synthe-

sized or trafficked neurosteroids could mediate effects in 

brain regions apparently devoid of the necessary enzymes 

for neurosteroid synthesis  (21) . However, due to technical 

difficulties in the quantification of neurosteroids, it is dif-

ficult to directly measure local neurosteroid production. 

 Baseline circulating plasma neurosteroid levels and 

levels in the brain are generally low, but they increase in 

response to certain physiological triggers such as stress, 

the ovarian cycle, and pregnancy. The basal THDOC con-

centration in the plasma of rats  (26, 27)  and humans  (28, 

29)  is approximately    ≤   5 n m  at rest. However, a stressful 

episode activates the hypothalamic-pituitary-adrenal axis, 

resulting in the release from the adrenal gland of corticos-

terone in rats and cortisol in humans  (30) . Plasma levels 

of THDOC increase approximately threefold to fourfold in 

rats subjected to an acute swim stress  (26)  and in humans 

responding to panic induction with cholecystokinin-tetra-

peptide  (29) , which parallels changes in corticosterone/

cortisol levels. The peak THDOC response occurs 10 – 30 

min after the cessation of the stress and can be prevented 

by the 5 α -reductase inhibitor, finasteride  (23, 26, 27, 31) . 

Allopregnanolone is also found at low nanomolar concen-

trations in the plasma of both humans  (32, 33)  and rats 

 (34 – 36)  and fluctuates in response to stress  (23, 36, 37)  

stage of menstrual/estrous cycle  (32, 38)  and pregnancy 

 (33, 37, 39 – 41) , reflecting changes in peripheral progester-

one levels. During pregnancy, plasma allopregnanolone 

levels have been shown to reach concentrations ranging 

from 40 n m  to   >  100 n m  in both rats  (35)  and humans  (33, 

37, 39 – 41) . Similarly, allopregnanolone levels have been 

shown to increase during pregnancy in the rat cerebral 

cortex, peaking by day 19 and returning to control levels 

upon parturition (day 21)  (35) . It is important to note that 

although basal and peak neurosteroids levels have been 

detected at nanomolar concentrations under normal 

physiological circumstances, these concentrations are 

sufficient to positively modulate GABA 
A
 Rs. Further, neu-

rosteroid concentrations may be significantly higher at 

specific neuronal locations reflecting local synthesis, dif-

fusion barriers, and metabolism. 

 Although neurosteroid concentration measurements 

have been made in the central nervous system (CNS) of 

both rats  (23, 35, 36, 42, 43)  and humans  (44 – 46) , accu-

rately measuring neurosteroid concentrations is difficult 

and reflected in the range of neurosteroid concentrations 

reported in the literature. Radioimmunoassays are com-

monly used to measure neurosteroid levels and are highly 

sensitive. However, sample contamination, antibody 

cross-reactivity, and different sample extraction, and puri-

fication procedures likely underscore some of the vari-

ability in the literature. Alternative approaches include 

separation of cross-reacting steroids followed by enzyme-

linked immunosorbent assays  (47)  and liquid or gas chro-

matography coupled with mass spectrometry, which have 

provided lower estimates of brain-derived neurosteroids 

[for reviews, see  (48, 49) ]. However, despite the difficul-

ties in accurately measuring neurosteroid levels in both 

plasma and the CNS, the relative changes in neurosteroid 

concentration during different physiological states are 

likely to be accurate  (48)  and will have important implica-

tions for neuronal and network excitability.  

  Neurosteroid modulation of GABA  Rs 
 GABA 

A
 Rs are assembled from a combination of 19 sub-

units ( α  
1 – 6

 ,  β  
1 – 3

 ,  γ  
1 – 3

 ,  δ ,  ε ,  θ ,  π ,  ρ  
1 – 3

 ) to form a heteropenta-

meric structure around a central ion channel pore, which 

fluxes chloride  (50 – 52) . The exact receptor subunit com-

bination determines not only its pharmacological and 
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biophysical properties but also its subcellular localiza-

tion. For instance, receptor combinations containing the 

 γ  
2
  subunit are found predominantly at the synapse where 

they mediate rapid synaptic (phasic) transmission  (53, 

54) . Meanwhile, assemblies containing the  δ  subunit have 

a high affinity for GABA and are found either perisynapti-

cally or extrasynaptically  (54 – 57) . These properties make 

them ideally suited to sense the nanomolar concentra-

tions of ambient GABA predicted to be found in the extra-

cellular space with persistent receptor activation result-

ing in the generation of a tonic chloride conductance 

 (54, 58, 59) . 

 Positive neurosteroids such as allopregnanolone and 

THDOC are potent modulators of GABA 
A
 Rs and act by 

increasing the open probability of the channel without 

changing the single channel conductance  (60, 61) . At low 

nanomolar concentrations, neurosteroids act as positive 

allosteric modulators. Indeed, in recombinant expression 

systems, neurosteroids have been shown to potentiate the 

peak current generated by the majority of GABA 
A
 R sub-

types in response to subsaturating GABA concentrations 

 (62) . Yet, at higher micromolar concentrations, neuroste-

roids directly activate the receptor in the absence of GABA 

 (63) . However, not all neurosteroids are positive modula-

tors of GABA 
A
 Rs. Adding to the diversity of neurosteroid-

mediated regulation, two members of the sulfated neuro-

steroid family, pregnanolone sulfate and DHEAS, inhibit 

GABA 
A
 Rs  (9) . The actions of these negative modulators 

of GABA 
A
 Rs are thought to be mediated by a binding site 

different from the one that mediates the actions of allo-

pregnanolone and THDOC  (9) . Although pregnane neuro-

steroids can potentiate synaptic GABAergic responses as 

demonstrated by a prolongation of IPSC decay time, low 

physiological concentrations of neurosteroids preferen-

tially potentiate the extrasynaptic  δ -subunit-containing 

receptors enhancing the tonic component of GABAergic 

inhibition  (64) . For instance, in both dentate gyrus and 

cerebellar granule cells, 10 n m  THDOC selectively potenti-

ates the tonic conductance with little effect on the phasic 

response  (64) . Consistent with the action of neurosteroids 

on extrasynaptic GABA 
A
 Rs, neurosteroid sensitivity is 

greatly reduced in mice deficient in the GABA 
A
 R  δ  subunit 

( Gabrd   - / -   mice)  (65) . Furthermore, the neurosteroid sensi-

tivity of receptors containing the  δ  subunit has also been 

confirmed in recombinant expression systems  (62, 66, 

67) . GABA binds to  δ -subunit-containing receptors with 

high affinity but relatively low efficacy; therefore, GABA is 

inefficient at promoting the open state. As neurosteroids 

increase the efficacy of the receptors by encouraging more 

frequent and longer open times, they are more effective at 

potentiating the effects of GABA at  δ -subunit-containing 

receptors compared with other isoforms where GABA is 

already a potent agonist  (68 – 71) . 

 Although more efficacious at  δ -subunit-containing 

receptors, neurosteroids can potentiate the effects of 

GABA at receptors containing most isoforms. In fact, 

the binding site for neurosteroids does not involve the  δ  

subunit. Using a combination of site-directed mutagene-

sis, electrophysiology, and homology modeling, two neu-

rosteroid-binding sites have been identified on GABA 
A
 Rs 

composed of  α  
1
  β  

2
  γ  

2
  subunits  (63) . First, threonine 236 on 

the  α  subunit, which lies close to the  α / β  interface, and 

tyrosine 284 on the  β  subunit are essential for the direct 

activation of the receptor by allopregnanolone. Second, 

the  α -subunit residue glutamine 241 located on trans-

membrane 1 is crucial for mediating both the allosteric 

potentiation and direct neurosteroid activation of the 

receptor  (63, 72 – 74) , although neighboring residues are 

also likely to be important for forming the steroid-binding 

site  (75, 76) . Recently, photoaffinity labeling using (3 α ,5 β )-

6-azi-pregnanolone identified phenylalanine 301 in the 

 β  
3
  subunit as a unique residue for neurosteroid binding, 

which likely forms part of the direct activation site  (77) . It 

will be of interest to modify this residue and examine both 

neurosteroid potentiation and direct activation of  α  
1
  β  

3
  γ  

2
 -

GABA 
A
 R subtypes using electrophysiology. In addition, 

photoaffinity labeling of native receptors subtypes could 

be used to distinguish those residues that are involved in 

the direct activation vs. allosteric modulation by neuro-

steroids  (75, 78) . 

 Despite being shown to potentiate the majority of 

GABA 
A
 R subtypes, the actions of positive neurosteroids at 

GABA 
A
 R subtypes containing the  ε  subunit ( ε -GABA 

A
 Rs) 

are less clear. Compared with other GABA 
A
 R subtypes, 

 ε -GABA 
A
 Rs are relatively insensitive to the potentiating 

effects of a number of intravenous anesthetics including 

the neurosteroid allopregnanolone  (62, 79, 80)  [but see 

 (81) ]. However, pregnane neurosteroids have been shown 

to directly activate  ε -GABA 
A
 Rs in the absence of endoge-

nous agonist  (62, 82 – 84) . As inclusion of the  ε  subunit has 

been shown to confer constitutive activity to the GABA 
A
 R 

in recombinant expression systems  (81, 84, 85) , it is diffi-

cult to determine whether neurosteroid action is mediated 

by allosteric potentiation of spontaneous openings or 

 via  steroid binding to the direct activation site  (86) . Fur-

thermore, understanding the actions of neurosteroids at 

 ε -GABA 
A
 Rs is complicated because neurosteroid actions 

may be influenced by receptor stoichiometry  (83) . There-

fore, further studies using native receptor populations 

such as  in vitro  slice models are required for the actions 

of neurosteroids at  ε -GABA 
A
 Rs to be fully understood. For 

example, recent evidence from brain stem respiratory 
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neurons of the ventral respiratory column showed an 

increased in  ε -GABA 
A
 Rs subunit expression during preg-

nancy and reduced sensitivity to intravenous anesthetics. 

These data suggest that increased expression of  ε -GABA 
A
 Rs 

during pregnancy might protect against respiratory depres-

sion despite elevated neurosteroid levels  (87) .  

  Regulation of GABA A Rs and changes 
in neuronal excitability 
 The presence of low concentrations (i.e., 10 – 30 n m ) of 

neurosteroids results in the potentiation of extrasynaptic 

GABA 
A
 Rs. Although the magnitude of potentiation will 

depend on receptor subtype, local GABA concentration, 

and steroid metabolism, the large charge transfer gener-

ated by these persistently open channels means that even 

a small increase in the tonic conductance will have a major 

impact on excitability. Generally, an increase in the tonic 

conductance will reduce the input resistance narrowing 

the temporal and spatial integration of synaptic events 

and increasing the amount of excitatory input required to 

generate an action potential  (54, 88) . In addition, changes 

in tonic inhibition can impact the sensitivity of a neuron 

to changes in inputs (the neuronal gain) by shunting the 

background synaptic noise  (54, 88, 89)  [but see  (90) ]. 

Larger increases in neurosteroid concentration (i.e.,    ≥   100 

n m ) will reduce neuronal excitability further by potenti-

ating the phasic component of GABAergic inhibition by 

prolonging IPSPs as well as enhancing tonic GABAergic 

inhibition  (64) . Therefore, as neurosteroid concentrations 

vary under both physiological and pathological condi-

tions, GABAergic signaling requires dynamic regulation 

to maintain optimal levels of inhibition [for a review, 

see  (91) ]. 

 Fluctuations in steroid hormones, such as those that 

occur during stress, the ovarian cycle, and pregnancy, 

have been shown to correspond to changes in GABAergic 

inhibition and subunit expression  (8, 10, 35, 92 – 97) . For 

example, the  δ  subunit has been shown to increase while 

the  γ  
2
  subunit decreases in mouse hippocampus at times 

of the ovarian cycle when progesterone levels are high, 

resulting in an increase in tonic inhibition and decreased 

levels of anxiety and seizure susceptibility  (95) . Similar 

changes have been observed in the periaqueductal gray 

matter  (98)  and the CA1 region of the hippocampus in 

response to elevated steroid levels  (97) . These changes in 

subunit expression can be prevented by blocking neuro-

steroid synthesis with finasteride and can be mimicked 

in males by progesterone administration  (11) . Similar 

changes have also been demonstrated in response to 

elevations in neurosteroids following acute stress  (11) . 

However, no changes in GABA 
A
 R mRNA expression levels 

were found in gonadotropin-releasing hormone neurons 

in the medial preoptic area in cycling mice  (99) , suggest-

ing that steroid-mediated modulation of GABA 
A
 R expres-

sion is likely cell type-specific. 

 The conditions in which there are prolonged changes 

in neurosteroid levels, such as during pregnancy, has 

been shown to induce alterations in the cerebrocortical 

and hippocampal expression of the GABA 
A
 R  γ  

2
  subunit 

 (35, 94, 100, 101)  and the hippocampal GABA 
A
 R  δ  subunit 

 (94) , which can be prevented by blocking the neurosteroid 

synthesis with finasteride  (35, 100, 101) . These changes in 

GABA 
A
 R subunit expression during pregnancy are corre-

lated with alterations in network excitability  (10) . Further, 

hippocampal expression of the  α 4 subunit has also been 

shown to fluctuate in response to changes in progesterone 

concentration  (8, 96, 102, 103) . Therefore, neurosteroids 

can alter GABAergic inhibition  via  the direct modulation 

of GABAergic inhibition as well as by altering GABA 
A
 R 

subunit expression, which exerts dramatic effects on neu-

ronal excitability. Thus, the neurosteroid regulation of 

GABAergic inhibition has significant implications for neu-

ronal excitability in health and disease.  

  Role of neurosteroids in disease 
 Neurosteroids have been implicated in numerous disor-

ders, including, but not limited to, depression, anxiety, 

alcohol abuse, epilepsy, and neurodegenerative diseases 

 (104 – 111) . The evidence of altered neurosteroid levels 

associated with several neuropsychiatric and neurologi-

cal disorders has generated a great deal of enthusiasm 

for targeting neurosteroids or their site of action for treat-

ment [for a review, see  (9) ]. Furthermore, the actions of 

neurosteroids on specific GABA 
A
 R subtypes have further 

increased enthusiasm for the therapeutic potential of 

these compounds. The following section will review the 

role of neurosteroids in disease as well as the therapeu-

tic potential of targeting neurosteroids, focusing specifi-

cally on neurosteroids that exhibit positive modulation of 

GABA 
A
 Rs. 

  Depression 

 Neurosteroid levels are abnormal in patients with 

major depression [for a review, see  (112) ]. For example, 
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allopregnanolone levels are decreased in patients with 

major depression compared with healthy controls [for 

a review, see  (112) ]. Conversely, the levels of the stress-

derived neurosteroid, THDOC, are elevated in patients 

with major depression [for a review, see  (112) ]. Antide-

pressant treatment normalizes the neurosteroid levels in 

depressed patients  (106, 107, 112 – 114) , which is thought 

to mediate the antidepressant effects of these drugs  (107, 

113, 114) . These data implicate altered neurosteroid levels 

in the pathophysiology of depression as well as a role 

in the effectiveness of antidepressant treatment. Selec-

tive serotonin reuptake inhibitors (SSRIs) enhance the 

antidepressant effects of neurosteroids  via  increasing 

GABAergic tone  (115) , which are independent of effects on 

serotonergic transmission  (113 – 115) , suggesting that the 

antidepressant effects of SSRIs and allopregnanolone are 

mediated  via  the GABAergic system rather than the sero-

tonergic system. Consistent with the role of neurosteroids 

in depression, exogenous administration of allopregna-

nolone exerts antidepressant effects in animal models  (115, 

116) . Further, mice with deficits in the primary target for 

neurosteroid action in the brain, the  δ -subunit-containing 

GABA 
A
 Rs ( Gabrd   - / -   mice), exhibit depression-like behavior 

during the postpartum period  (10, 94) . 

 Neurosteroids have also been implicated in mood 

disorders associated with the ovarian cycle. Allopregna-

nolone levels during the luteal phase are associated with 

symptom severity in patients with premenstrual dys-

phoric disorder (PMDD)  (117)  [for a review, see  (118) ], and 

increased levels are correlated with symptom improve-

ment  (119)  [for reviews, see  (120, 121) ]. However, there are 

conflicting results regarding alterations in neurosteroid 

levels in patients with PMDD. Many studies suggest that 

there is no significant difference in allopregnanolone 

levels in patients with PMDD compared with controls, 

whereas other studies suggest that allopregnanolone 

levels are decreased or increased in patients with PMDD 

[for a review, see  (118) ]. Given that there are no clear differ-

ences in neurosteroid levels in patients with PMDD, it has 

been proposed that these patients have altered responses 

to neurosteroids or the site of action of neurosteroids  (95) . 

Although the exact nature of the relationship remains 

unclear, these data demonstrate a role for neuroster-

oids and their site of action in the pathophysiology of 

depression.  

  Anxiety 

 Patients with generalized anxiety disorders have 

altered neurosteroid levels. Allopregnanolone levels are 

significantly decreased in patients with posttraumatic 

stress disorder  (122)  and in patients with panic disorder 

 (123) . Following experimentally induced panic attacks, 

allopregnanolone levels are decreased in patients with a 

history of panic disorders compared with healthy controls 

 (124, 125) , suggesting that there are deficits in neuroste-

roid signaling in patients with anxiety disorders. Together, 

these findings suggest that neurosteroids play a role in 

the pathophysiology of anxiety and panic disorders  (126) . 

However, the most convincing evidence for neurosteroid 

involvement in anxiety disorders is the potent anxiolytic 

actions of neurosteroids  (127 – 131) . Allopregnanolone  (129, 

132 – 134)  and THDOC  (127, 134)  have been shown to exhibit 

anxiolytic properties in many different behavioral para-

digms. However, the anxiolytic effects of neurosteroids 

appear to be state-dependent because neurosteroids do 

not exhibit anxiolytic properties following stress  (135) .  

  Epilepsy 

 Neurosteroids exhibit robust anticonvulsant actions in 

the pentylenetetrazol (PTZ), pilocarpine, kindling, bicuc-

ulline, and maximal electroshock models of epilepsy [for 

reviews, see  (9, 38) ]. In addition to their ability to decrease 

seizure susceptibility, neurosteroids also delay the pro-

gression of epileptogenesis  (136, 137)  and are neuroprotec-

tive against seizure-induced cell death  (138) . Furthermore, 

alterations in the expression of  δ -subunit-containing 

GABA 
A
 Rs, the primary target of neurosteroids, have been 

observed in the pilocarpine model of temporal lobe epi-

lepsy  (139)  and have been proposed to play a role in the 

process of epileptogenesis. Consistent with the anticon-

vulsant role of neurosteroids, neurosteroid withdrawal 

has been demonstrated to increase seizure frequency 

and decrease the anticonvulsant effects of GABA agonists 

 (140 – 142) . These data implicate alterations in neuroste-

roid levels and/or their site of action in epileptogenesis 

and seizure susceptibility. 

 It has been proposed that neurosteroids are par-

ticularly therapeutically relevant for the treatment of 

catamenial epilepsy. Catamenial epilepsy is thought to 

result from changes in hormone levels during the men-

strual cycle, resulting in increased seizure frequency at 

certain stages of the cycle  (143) . Progesterone has been 

used as an add-on therapy for the treatment of catame-

nial epilepsy  (144, 145) , with some success. Interestingly, 

simultaneous treatment with finasteride blocks the anti-

convulsant actions of progesterone  (146) , demonstrating 

that the anticonvulsant effects of progesterone are medi-

ated by neurosteroids. Progesterone withdrawal  (147)  and 
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neurosteroid withdrawal  (148)  increases seizure suscep-

tibility, which is thought to represent an animal model 

of catamenial epilepsy. Interestingly, following neuro-

steroid withdrawal, the anticonvulsant actions of the 

synthetic neuroactive steroid ganaxolone are enhanced 

 (149) , which may be due to alterations in the expression 

of neurosteroid-sensitive GABA 
A
 Rs  (150) . Animal models 

have demonstrated alterations in GABA 
A
 Rs associated 

with changes in hormone levels, which are thought to 

underlie the changes in neuronal excitability related to 

the estrous cycle  (95, 96) . Therefore, the evidence sup-

ports a role for altered neurosteroid levels and/or their 

site of action in the pathophysiology of epilepsy, particu-

larly catamenial epilepsy.  

  Alcohol 

 Both neurosteroids and ethanol have a shared pharma-

cological target, GABA 
A
 Rs  (7, 151, 152) . A neurosteroid-

binding site has been identified on the  α / β  interface of 

GABA 
A
 Rs  (72) , demonstrating the direct modulation of 

GABA 
A
 Rs by neurosteroids. Further, GABA 

A
 R  δ -subunit-

containing receptors confer sensitivity to neurosteroids 

and are thought to mediate the majority of their effects 

on GABAergic inhibition  (62, 64, 65, 67)  (see Neuroste-

roid Modulation of GABA 
A
 Rs). Because ethanol does 

not interfere with neurosteroid actions, it is thought 

to exert its actions on GABA 
A
 Rs  via  a site independ-

ent of the neurosteroid-binding site [for a review, see 

 (153) ]. However, the direct actions of ethanol on specific 

GABA 
A
 R subtypes have been more controversial. Studies 

have demonstrated that ethanol enhances tonic GABAe-

rgic inhibition  (154 – 156)  likely  via  actions on GABA 
A
 R 

 δ -subunit-containing receptors  (157 – 159) . However, as 

stated, these findings remain controversial and have 

not been able to be replicated by other investigators [for 

reviews, see  (160, 161) ]. 

 Ethanol has been shown to increase circulating con-

centrations of neurosteroids  (162 – 166) , which plays a role 

in modulating the sensitivity to ethanol [for reviews, see 

 (167 – 169) ]. For example, ethanol-induced elevations in 

neurosteroid levels mediate the sedative properties of 

ethanol  (170) , ethanol-induced impairments in memory 

 (171, 172) , the anxiolytic and antidepressant proper-

ties of ethanol  (173, 174) , as well as the anticonvulsant 

effects  (165) . However, neurosteroids do not mediate the 

ethanol-induced motor impairments  (175) . These data 

demonstrate that ethanol induces elevations in neuro-

steroid levels, which, in part, mediate the behavioral 

effects of alcohol.  

  Neurodegeneration 

 Decreased levels of neurosteroids have been observed in 

patients with neurodegenerative diseases [for a review, see 

 (176) ]. Allopregnanolone levels are decreased in patients 

with Alzheimer disease (AD), Parkinson disease (PD), 

multiple sclerosis (MS), and Niemann-Pick type C disease 

[for reviews, see  (176, 177) ]. The expression of StAR,  (178)  

one of the major neurosteroidogenic enzymes, is elevated 

in patients with AD. Similarly, there are changes in the 

expression of neurosteroidogenic enzymes in PD, MS, 

and Niemann-Pick type C disease [for a review, see  (177) ]. 

Increased expression of the enzymes involved in neuro-

steroidogenesis has been proposed to reflect compensa-

tory changes due to the decreased levels of neurosteroids 

related to neurodegeneration  (176) . Consistent with the 

involvement of neurosteroid deficits in neurodegenerative 

diseases, neurosteroids have been shown to have neuro-

protective properties in numerous different animal models 

[for a review, see  (179) ]. For instance, in a rodent model 

of Niemann-Pick type C disease, a lysosomal storage dis-

order with neuronal loss and a reduction in neurosteroi-

dogenesis, administration of a single dose of allopreg-

nanolone in the neonatal period significantly prevented 

neuronal cell death and a delay in the develo pment in 

neurological symptoms. Although the exact mechanisms 

underlying the protective effects of allopreg nanolone 

are unclear, these studies demonstrate the thera peutic 

potential of neurosteroids for some neurodegene rative 

disorders  (180, 181)  [for a review, see  (182) ]. Thus, several 

studies implicate neurosteroids in the pathophysio-

logy of several neurodegenerative disorders, including 

AD, PD, MS, and Niemann-Pick type C disease.   

  Therapeutic potential of 
neurosteroids 
 Neurosteroids have been demonstrated to have a thera-

peutic potential, particularly in patients with epilepsy 

 (144, 145) . However, naturally occurring neurosteroids 

have several limitations, which minimize their therapeu-

tic potential. First, neurosteroids are rapidly metabolized 

and thus have low bioavailability [for a review, see  (9) ]. In 

addition, neurosteroids can be converted to compounds 

that can act on steroid hormone receptors  (183) , thus medi-

ating unwanted actions that may offset the desired effects 

of these compounds. Due to these limitations, synthetic 

neurosteroids have been designed that exhibit a better 

pharmacological profile than endogenous neurosteroids. 
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For example, ganaxolone is a synthetic analogue of allo-

pregnanolone developed as a potential therapeutic agent 

[for reviews, see  (184, 185) ]. Ganaxolone has been shown 

to be effective in animal models of, infantile spasms  (186) , 

catamenial epilepsy  (149) , PTZ-induced seizures  (187, 

188) , and kindling  (140) . In clinical trials, ganaxolone 

has shown to significantly improve seizure frequency in 

epileptic adults and infants/children  (184, 186, 189)  and 

was explored as a sleep aide [for reviews, see  (184, 185) ]. 

However, the enthusiasm for the therapeutic potential 

of ganaxolone has diminished due to the adverse side 

effects, the most common of which were somnolence and 

nausea [for reviews, see  (69, 184) ].   
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