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   Abstract 

 Neonates of most species depend on milk lipids for calo-
ries, fat-soluble vitamins, and bioactive lipid components for 
growth and development during the postnatal period. To meet 
neonatal nutrition and development needs, the mammary 
gland has evolved effi cient mechanisms for synthesizing and 
secreting large quantities of lipid during lactation. Although 
the biochemical steps involved in milk lipid synthesis are 
understood, the identities of the genes mediating these steps 
and the molecular physiology of milk lipid production and 
secretion have only recently begun to be understood in detail 
through advances in mouse genetics, gene expression analy-
sis, protein structural properties, and the cell biology of lipid 
metabolism. This review discusses emerging data about the 
molecular, cellular, and structural determinants of milk lipid 
synthesis and secretion within the context of physiological 
functions.  
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  Introduction 

 Milk lipids are a major source of the calories needed for neo-
natal growth in most species  (1) , and provide a mechanism 
for delivery of fat-soluble vitamins and essential fatty acids 
to developing infants. Observations that the lipid content of 
milk can vary from around 50 %  (w/v) in fur seals and other 
aquatic mammals to slightly more than 1 %  in donkeys ( www.
havemilk.com ) suggest that the processes regulating milk lipid 
production have been conditioned by evolution to meet spe-
cies-specifi c nutritional needs of offspring. In species where 
it has been studied, it is estimated that milk lipid production 
makes signifi cant demands on maternal metabolism, requiring 
adaptations in nutrient intake, traffi cking, and utilization  (2) . 
In humans and rodents, it is thought that during lactation the 
mammary gland is one of the most active lipid-synthesizing 

and lipid-secreting organs in the body  (2 – 4) . To meet milk 
lipid production demands, the mammary gland must be able 
to effi ciently synthesize, transport, and secrete triglycerides 
(TAG). Because these processes are induced during preg-
nancy as the mammary gland develops into a secretory organ 
 (5) , and they represent robust functions of the mammary gland 
during lactation, the mammary gland has long represented 
an important model for investigating the biochemistry, cell 
biology, and physiology of lipid metabolism. Although much 
of the general framework of milk lipid synthesis and secre-
tion has been known for years  (6) , the cellular and molecular 
mechanisms mediating these functions have only recently 
begun to be uncovered. This review focuses on advances in 
understanding the molecular and cellular processes governing 
synthesis and secretion of milk lipids, and conceptual insights 
gained from these studies.  

  Mechanisms of milk lipid production 

 Milk lipids are derived by secretion of cytoplasmic lipid drop-
lets (CLD). These organelle-like structures, which are found 
in most cell types, function in the regulation of neutral lipid 
storage, hydrolysis, and traffi cking, and there is increasing 
evidence that they play important roles in controlling cellular 
lipid homeostasis  (7) . Many of the basic structural features 
of CLD are similar to those of serum lipoproteins. They are 
composed of a neutral lipid core, which in mammary epithe-
lial cells is >95 %  triacylglycerol. Like lipoprotein particles, 
their neutral lipid core is surrounded by a monolayer of phos-
pholipids, and coated by specifi c classes of proteins that serve 
structural and functional roles  (8) . 

 Extensive evidence from the study of the mammary gland 
and other tissues indicate that CLD originate from the endo-
plasmic reticulum (ER), by processes that as yet are not fully 
understood  (6, 9 – 12) . The prevailing view is that CLD origi-
nate by budding of neutral lipids that accumulate as lens-type 
structures between ER membrane leafl ets  (10) . Although 
this mechanism appears to account for the known structural 
organization of CLD, neither lens-like structures nor budding 
CLD have been unequivocally observed  (11) , even in highly 
lipogenic organs, such as the mammary gland (unpublished 
observations). An alternative view is that neutral lipids are 
synthesized in specialized ER-cytoplasmic domains that form 
 ‘ egg cup-like ’  structures  (11) . Three-dimensional freeze-
 fracture studies documenting the presence of lipid droplets 
partially enveloped by ER membranes  (11)  support this 
model; however, the model does not entirely account for the 
known structural features of CLD. A variation of the  ‘ egg cup ’  
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model suggests that CLD originate from interactions of ER 
loops containing neutral lipid synthesis domains  (12) . Like 
the  ‘ egg cup ’  model, this model can account for some but not 
all of the structural features of CLD. 

 Despite these limitations, neutral lipids are known to be 
synthesized by ER enzymes (Figure  1  )  (13 – 15) , and ultra-
structural and proteomic studies have demonstrated that CLD 
directly contact ER membranes  (16, 17) . Moreover, newly 
synthesized TAG have been shown to be rapidly incorpo-
rated into ER-associated CLD in lactating mammary tissue 
 (9)  and  de novo  generation of CLD has been demonstrated 
in ER-microsome fractions isolated from lactating mammary 
glands  (18) . 

 Signifi cantly, there is marked ER expansion during mam-
mary gland differentiation  (19 – 21) , and in species in which 
it has been studied, the ER accounts for approximately 25 %  
of the total volume of mammary epithelial cells in lactating 
animals  (21) . Thus, CLD production by ER processes may 
represent a regulatory step in the overall rate by which lipids 
are transferred into milk. Loss- and gain-of-function studies 
have identifi ed TAG synthesis and stabilization, as well as  de 
novo  fatty acid synthesis, as critical physiological regulators 
of CLD and milk lipid production. 

  TAG synthesis 

 The TAG core of CLD is synthesized by sequential fatty 
acid esterifi cation of glycerol-3-phosphate  (22)  or sn-2-

monoacylglycerol  (23) , by enzymes located in the ER (Figure 
1). The fi nal step, esterifi cation of diacylglycerol (DAG) to 
form TAG, is catalyzed by diacylglycerol  O -acyltransferase 
(DGAT). Two genetically different DGAT isoforms (DGAT1, 
DGAT2), with different physiological functions, are present 
in mammalian tissues  (24, 25) . DGAT1 appears to be specifi -
cally responsible for TAG synthesis by mammary epithelial 
cells (Figure 1). DGAT1-null mice are viable and possess sig-
nifi cant amounts of white adipose tissue; however, they have 
altered metabolic properties, defects in hair growth, and fail 
to lactate  (26) . Histological and electron microscopic analy-
ses showed that the development of their mammary glands 
was impaired, and that CLD were absent from their mammary 
epithelial cells  (26, 27) . Through transplantation experiments, 
it was shown that loss of DGAT1 in the stromal compart-
ment of the mammary gland was responsible for glandular 
development defects. DGAT1 loss in mammary epithelial 
cells, however, did not appear to affect or impair mammary 
gland development but did result in failure to form CLD in 
mammary epithelial cells and undergo functional differentia-
tion  (27) . Evidence in cattle showing that catalytic activity 
enhancing mutations in DGAT1 are associated with increased 
milk lipid content further implicates TAG synthesis as a rate-
limiting step in CLD and milk lipid production  (28) . 

 Synthesis of DAG in mammary epithelial cells occurs 
by the glycerol-3-phosphate pathway. Members of the 
glycerol-3-phosphate acyltransferase (GPAT) family cata-
lyze the fi rst acylation step in this process, the formation 
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 Figure 1    Molecular determinants of milk lipid formation. 
 The immediate precursors of milk lipids are CLD. These organelle-like structures, which originate from specifi c ER domains, are composed 
of a TAG core that is surrounded by a phospholipid monolayer and coated with functionally specialized proteins. Perilipin 2 (PLIN2, indicated 
by the red dashed line surrounding the TAG core) is the most abundant CLD-associated protein in milk-secreting cells. By inhibiting adipose 
triglyceride lipase (ATGL)-mediated lipolysis of TAG to fatty acids (FA) and diacylglycerol (DAG), PLIN2 plays an essential role in stabilizing 
CLD. The TAG core is synthesized by sequential FA acylation of glycerol by four ER membrane-associated enzymes. The fi rst step in TAG syn-
thesis, the addition of FA to glycerol-3-phosphate (G-3-P) to form LPA, is specifi cally catalyzed by glycerol-3-phosphate- O -acyltransferase-4 
(GPAT4). Loss of GPAT4 prevents milk lipid formation and lactation. The addition of FA to LPA to form PA is catalyzed by, as yet undefi ned, 
members of the 1-acylglycerol-3-phosphate- O -acyltransferase (AGPAT) family. Lipin1 catalyzes the removal of the phosphate group from 
PA to form DAG. The fi nal step in TAG synthesis, the addition of FA to DAG, is specifi cally catalyzed by diacylglcyerol- O -acyltransferase-1 
(DGAT1). Loss of DGAT1 prevents milk lipid formation and lactation. Inset: The FA substrates for synthesis of milk lipids are derived from 
the diet, by mobilization from adipose stores or by  de novo  synthesis from glucose. Protein kinase-B1 (AKT1) regulates the  de novo  synthesis 
pathway, and disruption of its functions is associated with abnormalities in milk lipid production.    
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of lysophosphatidic acid (LPA) from glycerol-3-phosphate 
(Figure 1)  (29) . Mammals express four GPAT isoforms  (29) . 
However, only GPAT4 appears to play a physiologically sig-
nifi cant role in catalyzing glycerol-3-phosphate acylation to 
form milk lipids. Transcript levels of this isoform increase 
in mammary glands of mice and cattle in response to lacta-
tion  (30, 31) ; in mice, loss of GPAT4 (which was initially 
identifi ed as AGPAT6) is associated with the nearly complete 
absence of lipids in milk and the absence of CLD in mammary 
epithelial cells  (30, 32) , with apparently negligible effects on 
adipose tissue lipids  (30) . 

 Less is known about the identities of the enzymes cata-
lyzing conversion of LPA to phosphatidic acid (PA) or PA to 
DAG in mammary epithelial cells. Acylation of LPA at the 
sn-2 position to form PA is catalyzed by members of family of 
1-acylglycerol-3-phosphate acyltransferases (AGPAT)  (29) . 
Currently, only two members of this family have validated 
AGPAT activity. Other family members, such as AGPAT6 
(see above) and AGPAT8, appear to possess different, or addi-
tional, acyltransferase activities  (29) . As yet, there is no clear 
indication which members of the AGPAT family catalyze PA 
formation in the mammary gland. However, high expression 
levels of GPAT4/AGPAT6 in mammary glands of lactating 
animals raise the possibility that it may be responsible for 
both LPA and PA biosynthesis  (31) . Members of the Lipin 
family of phosphatidate phosphatases catalyze the conversion 
of PA to DAG  (29) . Evidence in cattle, showing that lipin-1 
transcripts are relatively abundant in mammary glands of 
 lactating animals, have led to suggestions that this isoform is 
responsible for the synthesis of DAG used in milk lipid pro-
duction. However, the importance of lipin-1 in this process 
has not been validated by loss- or gain-of-function studies.  

  TAG stabilization 

 Members of the perilipin ( PLIN ) family of CLD-associated 
proteins play essential functions in regulating cellular TAG 
levels  (8, 33, 34) . Five  PLIN  family members with differ-
ent functional activities have been identifi ed in eukaryotic 
cells:  PLIN 1 (perilipin),  PLIN 2 (adipophilin/ADRP),  PLIN 3 
(TIP47/mannose-6-phosphate receptor-binding protein 1), 
 PLIN 4 (S3-12), and  PLIN 5 (OxPAT/lipid storage droplet 
protein 5)  (34 – 36) . A primary function of  PLIN  proteins is 
the regulation of lipolysis by controlling lipase access to the 
TAG core of CLD  (33, 37 – 39) . Perilipin 2, which appears 
to be the primary  PLIN  family member expressed by mam-
mary epithelial cells  (16, 40 – 42) , is an abundant protein 
on lipid droplets isolated from the milk of rodents, cattle, 
and humans  (16, 43, 44) . PLIN2 transcripts are selectively 
enriched in mammary epithelial cells in the mouse mammary 
gland relative to other cell types  (42) , and their levels undergo 
about a 30-fold increase during mammary gland differentia-
tion  (42) . Time course analyses, showing that the pattern of 
PLIN2 transcript expression in the differentiating mammary 
gland closely correlates with CLD appearance, growth, and 
accumulation, implicate PLIN2 as a physiological regulator 
of CLD production  (42) . Consistent with this conclusion, 
PLIN2 defi ciency impairs CLD accumulation in mammary 

epithelial cells of mice without affecting levels of the milk 
protein  β -casein  (45) . Evidence from mammary epithelial 
cells of intact mice  (45) , and from cultured HEK293 cells 
 (39) , showing that PLIN2 prevents binding of adipose TAG 
lipase to CLD suggest that it promotes milk production by 
stabilizing TAG against lipolysis (Figure 1).  

   De novo  fatty acid synthesis 

 The fatty acid substrates needed for milk lipid synthesis 
are derived  de novo  from glucose, or obtained by transfer 
from the serum  (46) . Coordinate increases in the activities 
of enzymes involved in  de novo  fatty acid synthesis  (47, 
48)  and transcript levels of genes encoding these enzymes 
 (49, 50)  have been documented in differentiating mammary 
glands of laboratory animals. Although the exact timing 
varies between species, induction of these enzymes occurs 
toward the end of pregnancy or at the beginning of lactation, 
with expression levels remaining elevated during lactation 
to maintain milk lipid production  (48, 49) . The importance 
of  de novo  fatty acid synthesis in regulating CLD produc-
tion is suggested by studies of mice lacking protein kinase 
B (AKT1)  (51) . AKT1-dependent signaling infl uences the 
synthesis of glycerol and lipid from glucose by modulating 
glucose uptake  (3, 51 – 53)  and regulating the activity ATP-
citrate lyase, a key regulatory enzyme in  de novo  fatty acid 
synthesis  (54, 55) . Mammary epithelial cells in AKT1-null 
mice exhibit normal morphology and milk protein expres-
sion, but their ability to produce CLD is impaired  (51) . 
Conversely, in transgenic mice overexpressing constitu-
tively activated AKT1, there is precocious and pronounced 
accumulation of large CLD in differentiating milk-secreting 
cells and signifi cant increases in the fat content of milk  (3) . 
Collectively, these data argue for a central role for AKT1 in 
regulating TAG formation in milk-secreting cells by increas-
ing  de novo  glycerol and fatty acid synthesis, and through 
activation of glucose uptake (Figure 1)  (51) . These effects of 
AKT appear to be isozyme specifi c, as defi ciencies in AKT-2 
or AKT-3 do not signifi cantly affect mammary gland proper-
ties or milk lipid formation, despite altering the metabolic 
properties of other cell types  (51) .   

  Mechanisms of milk lipid secretion 

 Milk and serum lipids are secreted by distinctly different 
mechanisms. Serum lipids are secreted by vesicle-mediated 
exocytosis from hepatocytes or enterocytes as soluble lipo-
protein particles  (56) . Lipoprotein particle synthesis and 
packaging into secretory vesicles occurs within the ER and 
Golgi  (56 – 58) ; thus, serum lipids can be viewed as originat-
ing within an external compartment. In contrast, milk lipid 
secretion occurs by an apocrine-like mechanism, involving 
apical plasma membrane envelopment of intact CLD, pro-
ducing membrane bilayer-coated structures known as milk 
fat globules (MFG)  (6, 59) . Milk lipids thus remain within 
the cytoplasmic compartment, and in contact with membrane 
 elements, even after secretion. 
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 Two models have been proposed to explain the process by 
which CLD undergo envelopment and secretion. In the fi rst, 
CLD become progressively surrounded by the apical plasma 
membrane by a process that may be analogous to the bud-
ding of viral particles  (60, 61) . Consistent with this  ‘ budding ’  
model, immunocytochemical evidence indicates that the 
majority of the MFG membrane envelope is derived from the 
apical plasma membrane  (62) . The second model differs from 
the fi rst in that CLD membrane envelopment is coupled to 
fusion of peripherally associated secretory vesicles with the 
apical plasma membrane  (59) . In this model, the MFG mem-
brane bilayer is hypothesized to be composed of both apical 
plasma membrane and secretory vesicle membrane elements. 
Although the weight of current evidence favors the  ‘ budding ’  
model  (6) , defi nitive evidence is lacking for either model. 
Moreover, observations of size and lipid composition differ-
ences in MFG  (63)  raise the possibility that milk lipids may be 
secreted by more than one mechanism. Nevertheless, a com-
mon feature of both models is the interaction of CLD with 
membrane elements; consequently, identifying the mecha-
nisms mediating such interactions is essential for understand-
ing how milk lipid secretion occurs. 

  CLD-membrane interactions 

 CLD are likely to exist in close contact with membrane struc-
tures at all times within cells  (11, 20, 61, 64) , and there is 
considerable evidence that they form specialized contacts 
with elements of the apical plasma membrane during milk 
lipid secretion. In non-lactating animals, CLD appear to be 
randomly distributed within the cytoplasm of mammary epi-
thelial cells  (19) . However, once lactation is initiated, they are 
found predominantly along the inner face of the apical plasma 
membrane  (19, 42) . Ultrastructural studies have shown that 
apical membrane-associated CLD are separated from the 
membrane bilayer by a 10  –  20-nm-thick layer of electron 
dense matrix material  (20) . Material of similar appearance 
also separates the lipid droplet surface from the membrane 
enveloping secreted MFG  (20, 65) . Matrix material has not 
been observed in association with CLD in non-secreting cells, 
nor is it detected on CLD located in other regions of lactat-
ing mammary epithelial cells  (59) , raising the possibility that 
its formation is secretion dependent, and that it represents 
structural linkages between CLD and apical membrane ele-
ments. Although its composition has not been fully defi ned, 
the matrix material associated with membranes surround-
ing human, bovine, caprine, and mouse MFG are uniquely 
enriched in three proteins: butyrophilin (BTN1A1/BTN), a 
receptor glycoprotein member of the immunoglobulin super-
family  (66, 67) ; xanthine oxidoreductase (XOR), a homodi-
meric purine oxidase that is highly expressed in mammary 
epithelial cells  (68) ; and PLIN2, which as mentioned earlier, 
is a CLD-associated protein that is abundantly expressed in 
mammary epithelial cells and that contributes to CLD pro-
duction  (42, 69) . Biochemical, localization, and binding assay 
evidence indicates that these proteins can form a stable com-
plex with each other, and gene deletion and dominant- negative 
experiments have shown that each protein is important for 

milk lipid secretion  (70 – 72) . However, the molecular deter-
minants mediating BTN, XOR, and PLIN2 interactions, and 
the mechanism by which these interactions mediate CLD 
envelopment and secretion, remain unknown, and alterna-
tive mechanisms have been suggested  (72, 73) . Three models 
have been proposed to explain how CLD interact with the api-
cal membrane on the basis of structure-function mapping and 
high-resolution imaging of BTN and PLIN2 (Figure  2  ).  

  Tripartite model 

 This model envisions that CLD-membrane interactions are 
mediated by PLIN2 on the CLD surface binding to a complex 
of BTN and XOR located on the cytoplasmic face of the api-
cal plasma membrane  (6)  (Figure 2). Evidence that BTN and 
XOR form functionally important linkages is suggested by 
observations that they are found in constant molar ratios on 
MFG membranes of cattle throughout lactation and that they 
can be cross-linked to each other using bifunctional cross-
linking reagents  (6) . Importantly,  in vitro  binding assays 
showing that purifi ed XOR binds to the C-terminal region 
(CTR) of BTN with relative high affi nity  (74)  provide direct 
evidence that BTN and XOR are inherently able to interact 
with each other to form stable contacts. 

 Butyrophilin is a type 1 transmembrane protein composed 
of an externally oriented N-terminal region (NTR) consisting 
of two Ig folds, and a multidomain C-terminal cytoplasmic 
region consisting of a stem domain, a B30.2 domain, and a 
C-terminal cytoplasmic tail  (74 – 76) . XOR has been shown to 
bind stoichiometrically, and selectively, to the B30.2 domain 
of mouse BTN1A1, the BTN family member expressed in 
mammary epithelial cells  (74) . Mutations within the N- or 
C-terminal portions of B30.2 domain disrupt XOR binding 
 (74) , suggesting that binding requires the entire domain and 
is not mediated by individual submotifs within the domain. 
B30.2 domains are  β -sheet structures containing SPRY and 
PRY subdomains that are thought to be protein-binding mod-
ules. Although structurally similar B30.2 domains are also 
found in other BTN family members (BTN2 and BTN3), 
as well as in tripartite motif (TRIM) proteins  (76)  and the 
stonefi sh toxin, stonutoxin  (77) , to date only the BTN1 B30.2 
domain appears to be capable of forming a stable complex 
with XOR  (74) . Sequence variability within the protein-bind-
ing motifs of B30.2 domain proteins has led to suggestions 
that individual B30.2 domains may have evolved to recognize 
specifi c binding partners. Thus, it is possible that the BTN1A1 
B30.2 domain may be a specifi c XOR binding partner. 

 Despite the strong  in vitro  binding evidence, the physiolog-
ical signifi cance of XOR-BTN interactions remains uncertain. 
CLD interaction with the apical plasma membrane is hypoth-
esized to be initiated by BTN oligomerization, induced by the 
binding of XOR  (6) . Data showing that the homodimeric XOR 
binds two BTN-B30.2 monomers or possibly one BTN-B30.2 
dimer  (74)  support the concept that XOR and BTN can form 
higher-order structures. However, the C-terminal cytoplas-
mic region of BTN containing the stem and cytoplasmic tail 
domains, in addition to the B30.2 domain, is able to dimerize 
in the absence of XOR, possibly through interactions between 
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 α  helical elements within the stem domain  (74) . Thus, it is 
possible that both homotypic BTN-BTN interactions and het-
erotypic XOR-BTN interactions may govern the interactions 
between BTN and XOR that lead to higher-order structure 
formation. Signifi cantly, discrete BTN-BTN or BTN-XOR 
complexes greater than second order have yet to be detected, 
although heating in SDS induces aggregation of full-length 
BTN  (74) . It is unclear whether failure to detect distinct 
 higher-order structures characteristic of BTN-BTN or XOR-
BTN oligomers refl ects the fact that the correct  concentrations 
and/or conditions required for oligomer formation were not 
achieved, or that the cytoplasmic domain of BTN is insuf-
fi cient for oligomerization. Detailed mapping of XOR-BTN 
and BTN-BTN binding determinants and careful biophysical 
analyses of these interactions should help resolve conceptual 
questions related to the role XOR-induced BTN oligomeriza-
tion plays in milk lipid secretion. 

 The concept that XOR binds to the apical plasma mem-
brane through its interactions with BTN may also be too 
simplistic. XOR is found on the limited number of MFG 
present in milk from BTN-null mice  (74) ; thus, additional, 
or alternative, mechanisms may be involved in the recruit-
ment of XOR to the apical membrane. Several observations 
suggest that membrane-associated redox activities contribute 
to the ability of XOR to bind to the apical membrane. First, 
the association of XOR with the apical plasma membrane is 

dynamically regulated by the secretory activity of the mam-
mary gland  (78) . Second, XOR undergoes reversible thiol 
oxidation-dependent conversion from a dehydrogenase (XD) 
to an oxidase (XO) that results in conformation changes that 
expose a hydrophobic domain  (79, 80) . Histochemical and 
biochemical studies indicate that the thiol-oxidized (XO) 
conformation is enriched in secreted MFG, whereas thiol-
reduced XOR is the predominant form of the enzyme in the 
cytoplasm of mammary epithelial cells  (68, 81) . Third, apical 
membrane preparations from lactating mammary tissue  (82)  
and membranes isolated from secreted MFG  (68)  are reported 
to contain thiol oxidase activity that converts XD to XO. More 
recent studies suggest that the fl avin-linked sulfhydryl oxi-
dase, quiescin-sulfhydryl oxidase-1 (QSQX1), is responsible 
for the majority of thiol oxidase activity in bovine milk  (83) . 
Members of the quiescin-sulfhydryl oxidase (QSOX) family 
are known to localize to the ER and the plasma membrane 
 (83) , raising the possibility that QSQX1 or a QSOX family 
member may play a role in XOR oxidation coupled to milk 
lipid secretion. Whether thiol-oxidized XOR binds to BTN, 
or to some other membrane component, the presence of BTN 
nevertheless appears to stabilize XOR membrane interactions, 
as signifi cantly more XOR is membrane-associated in MFG 
from wild-type mice than in MFG from BTN-null mice  (74) . 
Identifying the enzyme responsible for converting XOR from 
the XD to XO form is essential for understanding how XOR 
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 Figure 2    Mechanisms of milk lipid secretion. 
 Three conceptual models of the mechanisms of milk lipid secretion have been proposed. The tripartite model predicts that CLD associate with 
the apical plasma membrane through interactions between PLIN2 on the CLD surface and a complex of butyrophilin1A1 (BTN1A1) and XOR 
on the apical membrane. The BTN1A1-XOR complex is proposed to be formed between a specifi c B 30.2 domain located within the CTR of 
BTN1A1 and unknown portions of XOR. PLIN2 is proposed to bind to the BTN1A1-XOR complex through specifi c domains located within 
its CTR, and induce clustering of the complex and membrane envelopment of CLD. The BTN-BTN model predicts that homotypic interac-
tions between BTN1A1 molecules located on the CLD surface and the apical plasma membrane leads to the formation of BTN oligomers 
and membrane envelopment of CLD. The PLIN2-phospholiplid model predicts that interactions between the C-terminal four-helix bundle 
domain of PLIN2 and the inner phospholipid leafl et of the apical plasma membrane lead to bilayer alterations that induce membrane curva-
ture. Recruitment of the BTN1A1-XOR complex to CLD-membrane interaction sites stabilizes CLD-membrane interactions facilitating CLD 
membrane envelopment. PLIN2, red U-shaped structures surrounding CLD; BTN1A1, green modifi ed oval structures; XOR, blue triangle 
structures.    
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binds to the apical membrane and for understanding how this 
process possibly contributes to milk lipid secretion.  

  BTN model 

 Evidence from freeze-fracture replica immunolabeling 
(FRIL) of isolated MFG has challenged the tripartite model, 
suggesting instead that BTN-BTN interactions are solely 
responsible for coupling CLD to the apical plasma mem-
brane  (73)  (Figure 2). FRIL analysis of the topological dis-
tribution of PLIN2, BTN, and XOR on MFG shows that they 
exhibit divergent localizations that are inconsistent with the 
concept that they form a tripartite complex. Immunogold-
labeled BTN was detected on the cytoplasmic facing sur-
face (P-face) of the phospholipid monolayer surrounding the 
CLD core, and on the external facing surface (E-face) of the 
membrane bilayer. BTN labeling on the membrane bilayer 
E-face localized to a network of ridges that were juxtaposed 
and spatially matched to the BTN distribution on the P-face 
of CLD  (73) . In contrast, immunogold-labeled XOR local-
ized only to the P-face of the CLD monolayer and was dif-
fusely distributed on the monolayer surface, while PLIN2 
immunolocalized to the cytoplasmic faces of the membrane 
bilayer and the CLD monolayer  (73) . The diffi culty in fi t-
ting these data to the tripartite model led to the alternative 
proposal that homotypic interactions between BTN mole-
cules located on the CLD surface and the apical membrane 
mediate CLD secretion  (73) . Although this novel model is 
consistent with functional evidence that BTN is required for 
CLD secretion  (70) , it fails to explain how an integral type I 
membrane glycoprotein such as BTN becomes enriched on 
the CLD surface; the extensive biochemical evidence docu-
menting that XOR binds to BTN  (74, 75, 78) ; or the  in vivo  
evidence showing that disrupting XOR or PLIN2 functions 
impair CLD secretion  (71, 72) . Nevertheless, fi ndings show-
ing the presence of a network of ridges enriched in BTN on 
the membrane bilayer surrounding MFG suggest that BTN 
interacts to form higher-order structures with specifi c mac-
romolecular organization. What determines the organization 
of the BTN ridges and whether such organization refl ects the 
underlying structure of the machinery involved in milk lipid 
secretion remain to be determined. However, the organiza-
tion of BTN into spatially distinct regions on the membranes 
surrounding secreted MFG is consistent with the concept that 
it can oligomerize, and that its oligomerization may be func-
tionally relevant.  

  PLIN2 model 

 PLIN2 is composed of functionally and structurally dis-
tinct NTR and CTR  (84) . The NTR is composed of a PAT 
domain, which is a region of sequence homology with 
other PLIN family members that mediates proteasomal 
degradation  (85)  and possibly regulates lipase association 
functions  (85, 86) , and a putative 11-mer helical repeat 
region that appears to be responsible for CLD binding 
 (36, 87, 88) . The CTR encodes an independently folding 
four-helix bundle domain with an adjacent hydrophobic 

motif containing a unique  α / β  fold  (72) . This bipartite 
structural organization makes PLIN2 an ideal candidate to 
function as an adaptor between CLD and the apical mem-
brane elements involved in milk lipid secretion. Evidence 
that the PLIN2 CTR plays an important role in regulat-
ing milk lipid secretion is suggested by studies in which 
mutant PLIN2 lacking the CTR was expressed in mam-
mary epithelial cells of lactating mice  (72) . Mammary 
epithelial cells expressing this mutant possessed CLD and 
the mutant protein correctly localized to the CLD surface; 
however, secretion of CLD coated with the mutant protein 
was impaired relative to that of CLD coated with exog-
enously expressed recombinant full-length PLIN2, or with 
endogenous PLIN2  (72) . 

 Details about the role the PLIN2 CTR plays in milk lipid 
secretion are limited. However, helix bundle motifs are 
known to reversibly bind lipids  (89) , and several lines of evi-
dence indicate that the PLIN2 CTR has membrane-binding 
functions. First, freeze-fracture studies demonstrated that in 
addition to being on the CLD surface, PLIN2 is found on 
the cytoplasmic leafl ets of the plasma and ER membranes 
 (11) . Second, the PLIN2 CTR localizes to the plasma mem-
brane, but not to CLD, when stably expressed in cultured 
cells  (72) , whereas the PLIN2 NTR selectively localizes to 
the CLD surface  (72, 87) . Finally, liposome-binding assays 
demonstrated that the PLIN2 CTR directly binds to phos-
pholipid membranes, through charge-dependent interactions, 
possibly involving residues within helices 3 and 4 of the 
four-helix bundle  (72) . Collectively, these observations indi-
cate that structural features within the PLIN2 CTR direct its 
membrane-binding functions, and that the PLIN2 CTR binds 
membranes through direct interactions with phospholipids 
(Figure 2). These data led to the proposal that interactions 
between the PLIN2 CTR four-helix bundle domain and the 
inner phospholipid leafl et of the apical plasma membrane 
mediate membrane docking of CLD, and possibly initiate 
the envelopment processes that lead to their secretion  (84)  
(Figure 2).  

  CLD membrane envelopment 

 It is unknown how the apical membrane envelops CLD dur-
ing milk lipid secretion. In other cellular functions involving 
membrane shape changes, such as endocytosis, vesicle for-
mation, organelle biogenesis, and viral budding, membrane 
curvature is driven by protein-phospholipid interactions that 
perturb the bilayer organization and/or by oligomerization of 
membrane-associated scaffolding proteins that impart bend-
ing  (90) . Although the membrane deformations involved in 
vesicle formation or viral budding occur on a much smaller 
scale (nm) than those associated with CLD envelopment 
( μ m), there is evidence that the principles, and in some cases 
the molecules, governing both sets of processes may be simi-
lar. First, CLD may provide a physical template for mem-
brane-bending processes associated with their envelopment. 
Because CLD in mammary epithelial cells range in diameter 
from   <  1 micron to   >  10 microns in diameter, envelopment 
mechanisms must be able to accommodate a wide range of 



Mechanisms of milk lipid production  587

physical dimensions. The different bending geometries and 
stabilization forces associated with enveloping structures 
with different sizes suggest that CLD curvature, and the corre-
sponding organization of molecules arrayed on their surface, 
may provide the appropriate architectural template required 
to match membrane-bending geometries to CLD of differ-
ent dimensions. Ultrastructural experiments showing that 
CLD can be partially, or completely, wrapped by membranes 
of the ER provide further evidence that CLD can directly 
induce membrane bending  (10) . An implication of these fi nd-
ings is that membrane deformation processes associated with 
CLD envelopment are not specifi c to the plasma membrane; 
instead, the ability to bend membrane bilayers may be an 
inherent property of CLD. Consequently, it is possible that 
the lipid bilayer perturbations caused by contact with CLD 
molecules may be the mechanism that initiates their envelop-
ment during milk lipid secretion. 

 Second, proteins containing helical bundle motifs are 
known to be capable of deforming and bending membranes 
 (91, 92) . The abundance of PLIN2 on CLD in mammary epi-
thelial cells  (16) , and its ability to bind to membranes  (11, 
72) , possibly through interactions between its C-terminal 
four- helix bundle motif and membrane phospholipids  (72) , 
 implicate it in the induction of membrane bending associated 
with CLD envelopment. In support of this function, Plin3, 
which has a high degree of genetic and structural similarity 
to PLIN2  (36) , has been shown to induce artifi cial membrane 
tubulation  (93)  and is known to be required for budding of 
certain types of virus  (94) . Although the four-helix bundle 
motifs of Plins 2 and 3 have not been shown directly to medi-
ate membrane bending, the observations that binding of the 
PLIN2 four-helix bundle domain to membrane phospholipids 
is mediated by electrostatic interactions is consistent with ear-
lier suggestions that such interactions may be a common fea-
ture of proteins that mediate budding in other systems  (95) . 

 Third, for many membrane-bending mechanisms, scaffold-
ing proteins are recruited to sites of curvature to help stabilize 
membrane deformation  (90) . Lateral interactions between 
individual BTN molecules and XOR-BTN complexes at 
the apical membrane are hypothesized to form scaffolding 
required for CLD envelopment  (74) . This concept is supported 
by immunofl uorescence and electron microscopic evidence 
showing enrichment of BTN and XOR on the apical sides 
of budding CLD in mammary glands of lactating cattle and 
mice  (96, 97) , and by immunofl uorescence analyses show-
ing that BTN, XOR, and PLIN2 selectively localize near one 
another at sites of CLD secretion on the apical plasma mem-
brane of lactating mice  (78) . XOR enrichment on the apical 
plasma membrane and at sites of CLD secretion appears to 
be regulated by secretory activity  (78) , and to depend in part 
on the presence of BTN  (74) . These observations implicate 
recruitment of XOR to sites of CLD-membrane interaction as 
a possible mechanism regulating assembly and/or stabiliza-
tion of scaffolding structures involved in CLD envelopment. 
However, additional studies are needed to defi ne the molecu-
lar organization of the XOR-BTN complexes, and to under-
stand how their scaffolding properties are regulated and how 
they contribute to CLD envelopment.   

  Summary 

 Milk lipids are a rich energy source for developing neonates, 
and mammals have evolved effi cient lipid biosynthetic and 
secretion mechanisms to meet the postnatal growth demands 
of their young. Although the biochemical steps involved in 
milk lipid synthesis have been known for decades  (98) , the 
identities of the genes mediating these steps and the molecu-
lar physiology of milk lipid production have only recently 
begun to be understood in detail. A central concept derived 
from studies of transgenic mice is that milk lipid synthesis 
and secretion appear to play integral roles in mammary gland 
form and function, and that interference with these processes 
leads to complete lactation failure  (26, 27, 30, 32, 45, 70, 71, 
99) . Whether the same is true for other species is uncertain, 
as the metabolic needs and survival of neonatal mice may be 
particularly dependent on high milk energy content provided 
by lipids  (100, 101) . However, gene deletion studies show-
ing that disrupting the synthesis  (27, 30)  or stabilization of 
TAG  (45)  interferes with mammary alveoli maturation during 
pregnancy suggest that balanced lipid metabolism, particu-
larly those processes involved in milk lipid production, are 
essential for normal mammary gland development. TAG syn-
thesis precursors, including fatty acids, DAG, PA, and LPA, 
are known to have cell signaling and gene regulator functions 
 (29) . Thus, it is possible that milk lipid synthesis, through the 
actions of key intermediates, may indirectly contribute to the 
regulation of mammary gland development. 

 The mechanism of milk lipid secretion incorporates sev-
eral features that distinguish it from other apocrine secretion 
mechanisms that have been described. First, if it is assumed 
that CLD are components of the cytoplasm, then milk lipid 
secretion may be the only major secretory pathway that is 
truly apocrine. Although apocrine secretion processes have 
been described in other glandular systems, these mechanisms 
of secretion appear to be hybrids of apocrine and exocrine 
secretion  (102) , and the contribution of apocrine processes 
to the composition of their secretion products is unclear. In 
contrast, secretion of milk lipids by membrane envelopment 
of CLD appears to account for the majority, if not all, of the 
lipid secreted into milk. Second, the intimate association of 
CLD with the apical membrane during milk lipid secretion 
appears to distinguish it from other apocrine secretion pro-
cesses, which are characterized by capture of soluble protein 
and/or secretory vesicle cargo within membrane blebs without 
evidence of membrane interaction  (102, 103) . At present, it is 
unclear to what extent the cargo infl uences the formation of 
these membrane blebs. In contrast, multiple lines of evidence 
indicate that direct interactions between specifi c CLD surface 
proteins and elements of the apical membrane are critical 
for apocrine secretion of CLD, possibly serving as molecu-
lar template to guide this process. Third, rather than being 
simply lipid storage structures, CLD are now recognized as 
having organelle-like properties  (10, 104, 105) . Thus, milk 
lipid secretion maybe a unique example of apocrine secretion 
of an organelle. 

 Why mammary epithelial cells evolved to use a membrane 
envelopment mechanism for secreting lipids rather than the 
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ER and Golgi exocrine pathway used for serum lipid secre-
tion is unclear. One possibility is that membrane envelopment 
of CLD may provide a more effi cient pathway for lipid secre-
tion than the ER-Golgi pathway. Although lipid secretion 
through the ER-Golgi pathway can be signifi cant (serum lipid 
concentration in humans range from 2 %  to 10 % ), milk lipid 
concentration in many species is well over 10 % . In addition, 
compared with serum lipoprotein particles, MFG have mark-
edly larger diameters ( ∼ 3 – 5  μ m on average compared with 
 ∼ 0.2  μ m for chylomicrons). Consequently, the corresponding 
volume of lipid contained within a MFG is about 10 000 times 
that of chylomicron particle, which is consistent with an enor-
mous gain in lipid secretion effi ciency that may be required to 
meet neonatal growth demands. 

 A second possibility is that MFG have been proposed to 
play biological functions beyond providing a rich source of 
energy for neonates  (106, 107) . In addition to providing struc-
tural support, the membrane enveloping MFG is thought to 
possess bioactive components that potentially contribute to 
the protection of infants against bacterial infection and pos-
sibly their nutrition  (107, 108) . The concept that MFG are 
actually secreted organelles also suggests the provocative 
possibility that MFG are sites of biological reactions impor-
tant for infant health. It has been known for over 30 years that 
MFG membranes contain redox enzymes, possibly derived 
from the ER  (65) . More recently, proteomic analysis has 
identifi ed additional enzymes and proteins with possible bio-
logical activities on MFG membranes  (109)  and provided evi-
dence that many of these proteins originate from enveloped 
CLD  (16, 110, 111) . 

 In conclusion, efforts to understand the molecular frame-
works regulating lipid synthesis and secretion have led to the 
identifi cation of critical enzyme and protein determinants of 
these processes, and are beginning to uncover their underly-
ing structural mechanisms. Importantly, these studies have 
provided new insight into possible roles lipid metabolism may 
play in mammary gland development and function, and the 
potential biological functions of the secreted lipid droplets. 
However, many important details remain to be learned about 
the mechanisms controlling CLD biogenesis and secretion, and 
how these processes are regulated at the physiological level to 
ensure suffi cient milk lipid production during lactation.   
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