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   Abstract 

 Glucocorticoids, recognized as stress-related steroid hor-
mones secreted from adrenal glands, have multiple roles 
in brain function. The concentration of glucocorticoids is 
regulated by the hypothalamic-pituitary-adrenal axis, and 
chronically elevated levels of glucocorticoids are putatively 
involved in the pathophysiology of mental disorders, such as 
depression. As corticosteroids are also widely used as medi-
cal drugs (e.g., for chronic lung disease in infants), the devel-
opmental infl uence of glucocorticoids on neuronal survival 
and synaptic plasticity is a critical concern. Although many 
reports suggest a biological effect of glucocorticoids on neu-
ronal populations of the central nervous system (CNS), some 
reports suggest a possibility that glial responses (including 
regulation of neurotrophic factor expression) to glucocorti-
coids are different from that of neurons. In the present review, 
we show an overview of the current knowledge concerning 
the impact of glucocorticoids on behavior in animal models of 
depression, and on cell survival and function in the CNS.  

   Keywords:    brain-derived neurotrophic factor (BDNF); 
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  Introduction 

 The hypothalamic-pituitary-adrenal (HPA) axis consists of 
numerous tightly regulated endocrinal steps that control the 

blood concentration of glucocorticoids. Several molecules 
and receptors control this system, including the glucocorti-
coid receptor (GR) located in neuronal regions of the HPA 
axis. It is speculated that intense and chronic stress results in 
HPA axis dysfunction with a consequent increase in gluco-
corticoids that may contribute to the onset of brain diseases 
including depressive disorders  (1, 2) . Therefore, the relation-
ship between glucocorticoids and associated receptors and 
how they infl uence behavior in animal models of depression 
is an area of intense research interest. Furthermore, many 
reports indicate that exogenous glucocorticoid administration 
leads to depressive- and anxiety-like behaviors in rodent mod-
els  (3, 4) , corroborated by studies using GR gene mutant mice 
to show alternation in depressive- and anxiety-like behaviors 
 (5, 6) . In this review, we provide an overview of the behav-
ioral changes of depressive animals after chronic stress and 
glucocorticoid administration. 

 Accumulating evidence including current reports indi-
cate that glucocorticoids and GR exert multiple biological 
effects on central nervous system (CNS) neurons. In cell 
survival, glucocorticoid exposure during gestation increa-
ses caspase-3-immunoreactivity in the amygdala of rats, 
although postnatal exposure increases immunoreactivity in 
only female rats, suggesting sex-dependent differences  (7) . 
In addition to this apoptotic etiology, possible infl uences of 
glucocorticoids on synaptic plasticity have been shown. For 
example, it was reported that hippocampal long-term poten-
tiation (LTP) can be modifi ed through GR and mineralocor-
ticoid receptor (MR) functions  (8, 9) . In the hypothalamic 
arcuate nucleus, synaptic inputs on proopiomelanocortin 
(POMC) or neuropeptide Y (NPY) neurons were differently 
affected by adrenalectomy (ADX)  (10) . Therefore, gluco-
corticoids also play a role in the development of synaptic 
connectivity. Furthermore, recent studies including ours, 
suggest a possible interaction between growth factors and 
glucocorticoids. In rat cerebral cortex, mecamylamine, an 
acetylcholine receptor antagonist, reversed glucocorticoid-
stimulated downregulation of brain-derived neurotrophic 
factor (BDNF), a critical neurotrophin  (11) . In cultured 
neurons, acute application of glucocorticoids induced acti-
vation of TrkB, a critical BDNF receptor  (12) , whereas 
long-term pretreatment with glucocorticoids decreased 
BDNF-mediated synaptic function  (13) . In this paper, we 
also discuss the current knowledge concerning glucocorti-
coid/GR regulation of cell survival (including neurons and 
glia), synaptic function and expression of growth factors, 
as this will contribute to the overall understanding of glu-
cocorticoid infl uence in the brain.  
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  Stress and HPA axis disturbance 

 The CNS and several endocrine steps in vertebrates synergize 
to cope with both physical and psychological  ‘ stressors ’ . It 
is well known that the HPA axis plays a key role in coping 
mechanisms via controlling plasma concentration of corti-
costeroids (cortisol in humans and corticosterone in rodents). 
Two neuropeptides, corticotropin-releasing hormone (CRH) 
and vasopressin (AVP), both secreted from the hypothalamus, 
stimulate the pituitary gland to secrete adrenocorticotrophic 
hormone (ACTH) which then induces corticosteroid (gluco-
corticoids and mineralocorticoids) secretion from the adrenals 
(Figure  1  ). Circulating corticosteroids which are assumed to 
penetrate the blood-brain barrier reach various brain regions, 
such as the hippocampus, hypothalamus, amygdala, cerebel-
lum and cerebral cortex  (14) , and bind to their respective 
receptors including GR and MR. When  ‘ stressors ’  fade away, 
feedback loops work to inhibit the HPA axis through GR and 
MR until corticosteroid levels reach a stable homeostatic 
point (Figure 1). Indeed, both GR and MR are ubiquitously 
expressed throughout mammalian brain tissue  (14)  with high 
levels of GR mRNA and protein observed in CA1 and CA2 

regions of the hippocampus, dentate gyrus, paraventricular 
hypothalamus, lateral geniculate, amygdala and cerebellum, 
and high MR mRNA in hippocampal pyramidal cells, den-
tate gyrus granule cells, lateral septum and amygdala in the 
squirrel monkey. In addition, measurable amounts of GR 
and MR mRNA were also detected in the cerebral cortex 
 (14) . Interestingly, in the cerebral cortex, different distribu-
tions between these two receptors were evident, with GR in 
all cortical layers, particularly the pyramidal cell-rich layers 
II/III and V, and MR limited to superfi cial cortical layers  (14) . 
Importantly, MR has a 10-fold higher affi nity for glucocorti-
coids compared to GR  (15, 16) . Hippocampal levels of GR 
mRNA are 3- to 5-fold lower than that of MR mRNA in rat 
 (17) , squirrel monkey  (14)  and human tissue  (18) . Given that 
a considerable amount of GR is observed in the prefrontal 
cortex, it is possible that GR in the prefrontal cortex plays a 
role in the corticosteroid-dependent negative feedback loop in 
the HPA axis  (19) . 

 Accumulating evidence indicates that HPA axis disturbance 
is strongly correlated with clinical depression. Furthermore, 
it is reported that the lifetime prevalence of a major depres-
sive disorder with psychotic features is around 0.4 %   (20, 21) , 

 Figure 1    Disturbance in HPA axis feedback loop. 
 The hypothalamic-pituitary-adrenal (HPA) axis maintains a homeostatic balance in the blood concentration of corticosteroids (glucocorticoids 
and mineralocorticoids). The hypothalamus secretes corticotropin-releasing hormone (CRH) and vasopressin (AVP), which stimulate release 
of adrenocorticotrophic hormone (ACTH) by the pituitary. ACTH stimulates the adrenals to produce and secrete two corticosteroids. Increased 
levels of corticosteroids caused by stressors are returned to basal levels through their receptors, the glucocorticoid receptor (GR) and the 
mineralocorticoid receptor (MR). GR expression was observed in broader regions than MR. The close correlation between chronic change 
in the plasma concentration of glucocorticoids and GR expression was reported particularly in the hippocampus. It is possible that chronic 
stress causes dysregulation of the HPA axis, resulting in increased glucocorticoid levels which contribute to the pathophysiology of depressive 
disorders. Furthermore, it is possible that GR downregulation (particularly in the hippocampus) is closely related to the dysregulation of the 
HPA axis and depression.    
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with symptoms including depressed mood, anhedonia and 
sleep abnormalities  (22) . When patients are pretreated with 
oral dexamethasone (DEX, a potent GR agonist) and given 
an infusion of CRH (namely the DEX/CRH test), a greater 
increase in ACTH and corticosteroid secretion is observed in 
those with depressive disorders  (1, 2) . Recently, Hinkelmann 
et al. showed that memory functions, such as verbal memory, 
visuospatial memory and working memory, are impaired 
in patients with depression whose cortisol levels were sig-
nifi cantly higher than healthy subjects  (23) . Impairments 
in brain function, therefore, could be caused by HPA axis 
dysregulation. 

 Degeneration of hippocampal neurons is caused by sus-
tained administration of glucocorticoids in non-human 
primates  (24) . Remarkably, several reports suggest an asso-
ciation between reduced hippocampal volume and depres-
sion in humans  (25 – 27) . Additionally, in rodents, a possible 
contribution of GR function in depression was revealed. GR 
knockout mice using a nestin promoter in which the GR gene 
was deleted during early development in whole brain tissue 
showed decreased anxiety-related behavior  (5) , whereas GR 
knockout mice with forebrain-specifi c disruption of GR dis-
played dysfunction in the negative feedback system of the 
HPA axis  (28) . Interestingly, in both GR heterozygous (50 %  
down) and 2-fold GR overexpression mice, signifi cant dys-
regulation of the HPA axis was revealed through use of the 
DEX/CRH test  (6) . As expected, upregulation of GR expres-
sion after antidepressant treatment was reported in rat primary 
cultured neurons  (29) . Such a positive effect of antidepres-
sants on GR expression was confi rmed in the hippocampus 
and the hypothalamus of rats  (30 – 32) . Furthermore, poten-
tial use of mifepristone (RU38486), a GR antagonist, for the 
treatment of major depression has been reported [for a review, 
see  (33) ]. Together, all these fi ndings suggest that HPA axis 
disturbance substantially contributes to the pathophysio-
logy of depression. Because both GR and MR can function 
as transcription factors, differences in glucocorticoid levels 
may refl ect a change of structure/function of brain tissue after 
long-term exposure. This is especially true when considering 
stressful experiences in early life, as this exposure can impact 
mental health in adulthood  (34) . In the following sections, 
we offer an overview of glucocorticoid-induced behavioral 
changes in depressive animal models, supplemented with cur-
rent knowledge concerning glucocorticoid regulation on cell 
survival and synaptic function.  

  Regulation of GR in an animal model 

of depression 

 Several lines of mice with a defi cit in HPA axis-related genes 
show signifi cant alterations in depressive- and anxiety-like 
behaviors. Both mice that overexpress CRH and are defi cient 
in CRH receptor-2 display exaggerated anxiety-like behavior 
in the elevated-plus maze and light/dark box tests  (35, 36) . 
One of the characteristics of GR knockout mice is the reduced 
anxiety in the dark/light crossing task and the zero maze test 
 (5) . By contrast, depression-like behaviors in the learned-

helplessness test are observed in heterozygous GR mutant 
(GR  + /- ) mice with 50 %  GR expression levels  (6) . Time- and 
forebrain-specifi c GR knockout mice demonstrate depression-
like behavior in the forced swim, tail suspension and sucrose 
preference tests  (28) . Interestingly, these three GR knockout 
mice described above exhibit higher blood concentrations of 
corticosterone, although their behavioral phenotypes are very 
different, respectively  (5, 6, 28) . These different behavioral 
phenotypes may be attributed to expression levels of GR 
(total defi cient vs. reduced) or to the various brain regions in 
which GR functions. 

 Importantly, glucocorticoid administration has been 
shown to exacerbate depression- and anxiety-like behaviors 
in four different treatment scenarios: (i) 5 mg/kg prednisone 
(synthetic glucocorticoid) for 5 days  (3) , (ii) 20 mg/kg cor-
ticosterone for 20 days  (4) , (iii) 50 mg/kg prednisolone for 
6 – 7 days  (37)  and (iv) 5 mg/kg corticosterone for 7 weeks 
 (38) . Remarkably, it is possible that long-term elevation of 
glucocorticoids reduces the expression of GR as discussed 
below leading to the manifestation of anxious and depressive 
behaviors. 

 The regulation of GR compounded by stress or glucocor-
ticoid exposure is complex. A transient (less than 1 h) trend 
of upregulation and signifi cant downregulation (at 2 h) of GR 
mRNA was found in the hippocampus of rats restrained for 
30 min  (39) . Furthermore, Fujikawa et al. reported signifi cant 
attenuation (at 30 min) and elevation (at 2 h) of GR mRNA 
in the dentate gyrus, followed by re-attenuation of GR lev-
els at the end of a 7-h restrain stress exercise in the water 
 (40) . Another study lead by Herman and Spencer showed 
that exposure to 4-day corticosterone that reaches approxi-
mately 250 ng/ml in plasma of sham-operated rats caused 
downregulation of GR translation in the CA1 region of the 
hippocampus, whereas ADX induces consistent upregula-
tion of GR in CA1, CA3 and dentate gyrus regions of the 
hippocampus  (41) . Furthermore, GR downregulation in the 
hippocampus was shown to occur at 8 h after single corti-
costerone (2 mg/kg) administration  (42) . Interestingly, Zhou 
et al. recently reported a possible role for neuronal nitric 
oxide synthase (nNOS) in the regulation of GR expression. 
They found that chronic mild stress enhances nNOS activity, 
which induces a consequent downregulation of GR via sol-
uble guanylate cyclase/cGMP and peroxynitrite/extracellular 
signal-regulated kinase (ERK) pathways  (43) . A summarized 
list of changes in GR expression after stress or glucocorticoid 
administration is shown in Table  1  .  

  Glucocorticoids and cell death 

 Considering that DEX is used for the treatment of chronic 
lung disease in preterm infants, the neurodevelopmental 
impairment after long-term treatment is a critical concern. 
Specifi cally, many recent studies clearly show that glucocorti-
coids, including synthetic DEX, induce apoptosis of neuronal 
populations. Yu et al. showed that DEX exposure causes apop-
tosis in immature hippocampal neurons via activation of GR, 
whereas exposure to RU38486, a GR antagonist, prevents the 
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DEX effect  (44) . Additionally, gestational or postnatal expo-
sure to DEX was shown to activate caspase-3, which plays a 
pivotal role in mechanisms underlying cell death  (7) . DEX 
administration was performed either at late gestational age or 
at postnatal days 4 – 6. They found that prenatal DEX treat-
ment increased cleaved caspase-3-immunopositive cells in the 
amygdala of both sexes, whereas postnatal treatment caused 
an increase of caspase-immunoreactivity of female rats only. 
An increase in  Bax  mRNA, a proapoptotic molecule, was also 
confi rmed  (7) . 

 Generally, as it is diffi cult to treat patients with neuro-
degenerative disorders (including Alzheimer ’ s disease and 
Parkinson ’ s disease) where progressive neuronal cell death is 
occurring, the emphasis on prevention of such brain diseases 
is growing. Specifi cally, current research focuses on dietary 
restriction (DR) and its potential to reduce risk for neurodegen-
erative brain diseases  (45) . Kainic acid (KA), an excitotoxi-
city drug, stimulates maze learning defi cits in rats which were 
ameliorated following an every-other-day fasting regimen 
for 14 weeks  (46) . ADX with a consequent decrease in corti-
sterone levels (to 30 %  below that of control) before the DR 
regimen remarkably enhanced the ameliorating effects of DR, 
suggesting a possible interaction between DR and glucocor-
ticoids  (46) . In this system, the benefi cial effects of DR were 
demonstrated in that KA-treated rats showed signifi cant cell 
death in the hippocampal region, whereas rats with ADX + DR 
who were also exposed to KA exhibited an increase in neu-
roprotection and upregulation of pCREB (cAMP-responsive 
element binding protein) and BDNF expression  (46) . 

 The regulation of glial cells by glucocorticoids and the 
downstream effects on neurodegeneration are also important. 
ADX causes an increase in both glial fi brillary acidic pro-
tein (GFAP) and transforming growth factor- β 1 (TGF- β 1) 
mRNA in the dentate gyrus, and these glial genes ultimately 
play a role in ADX-dependent neuronal apoptosis  (47) . 
Recently, astrocyte function after glucocorticoid exposure 
has been shown. Yu et al. reported that  in vivo  application of 
DEX caused neuronal cell death but not astroglial cell death 
in the hippocampus of rats  (48) . They investigated possible 
changes in antiapoptotic and proapoptotic markers (activated 

caspase-3, Bax, Bcl-2, etc.) in both neuronal and astroglial 
cultures, fi nding that astrocytes are resistant to glucocorti-
coid-mediated apoptosis. Furthermore, both BDNF and basic 
fi broblast growth factor (bFGF) mRNA in astrocytes were 
increased after exposure to glucocorticoids, although mRNA 
of nerve growth factor (NGF) was decreased  (48) . Because 
it is well known that glial populations produce a variety of 
growth factors  (49, 50)  while playing a role in neuropro-
tection, further study concerning the detailed mechanisms 
underlying neurotrophic factor expression in glial cells after 
glucocorticoid administration is necessary.  

  Glucocorticoids and neuronal plasticity 

 As mentioned above, in the case of preterm infants, DEX is 
useful to reduce the risk of chronic lung disease. Therefore, 
the possible infl uence of neonatal glucocorticoid exposure 
on synaptic plasticity is a critical issue and should be clari-
fi ed. McEwen and colleagues reported that enhancement and 
reduction of LTP in hippocampal neurons were produced by 
MR and GR agonists, respectively  (8) . Furthermore, neona-
tal treatment with DEX impaired hippocampal LTP, which, 
in turn, increased long-term depression in adolescent rats 
 (9) . DEX administration ultimately induced phosphorylation 
of the  α  isoform of calcium calmodulin-dependent kinase II 
(CaMKII) as well as decreased levels of protein phosphatase 
1  (9) . Several reports indicate that neonatal DEX treatment 
induces slow-rate weight gain and impairs hippocampal syn-
aptic plasticity  (51, 52) . Recently, Hsu and colleagues  (53)  
found that rats reared in small litters consisting of four pups 
displayed an improvement in both neonatal DEX-induced 
growth retardation and hippocampal synaptic dysfunction 
during adulthood (including reduced basal glutamatergic 
transmission, decreased LTP and increased long-term depres-
sion), indicating a correlation between growth retardation and 
the effects of neonatal DEX treatment on adult synaptic func-
tion  (53) . Considering that CaMKII and protein phosphatase 
1 play an essential role in hippocampal LTP regulation  (54) , 
discovering the mechanism underlying the function and/or 

 Table 1      Regulation of GR by stress and corticosterone administration.  

Stressor/glucocorticoid 
treatment

Animal Affected area Changes in GR expression Reference

Restraint for 30 min SD rat CA1, CA3, DG  ↓  120 min after single restraint Paskitti et al., 2000  (39) 
Chronic intermittent 
stress

SD rat CA3  ↓  at 14 and 28 days during chronic stress 
exposure

Paskitti et al., 2000  (39) 

Restraint in the water 
for 7 h

SD rat DG  ↓  at 30 min during stress exposure  
 ↑  at 2 h during stress exposure  
 ↓  at 7 h during stress exposure

Fujikawa et al., 2000  (40) 

ADX and CORT 
supplement

SD rat CA1, CA3, DG  ↑  4 days after ADX  
- 4 days after ADX and CORT supplement

Herman and Spencer, 1998  (41) 

ADX and CORT 
administration

SD rat Hippocampus  ↑  3 days after ADX  
 ↓  at 8 h after CORT administration

H ü gin-Flores et al., 2004  (42) 

CORT administration B6129SF2 
mice

Hippocampus  ↓  7 days during chronic CORT 
administration

Zhou et al., 2011  (43) 

   ADX, adrenalectomy; CA, Cornu Ammonis; CORT, corticosterone; SD, Sprague-Dawley; DG, dentate gyrus.   
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expression of synaptic molecules (e.g., CaMKII and protein 
phosphatase 1) throughout growth retardation is very lucra-
tive. By contrast, potentiation of LTP by DEX exposure was 
reported. In LTP induction by tetanic stimulation using organ-
otypic hippocampal slice cultures, spatiotemporal changes of 
signal transmission were enhanced by DEX treatment  (55) . In 
their system, Gongjin-dan, a multi-herbal formula, reversed 
DEX action on LTP. Furthermore, they found that signifi cant 
secretion of NGF, a key neurotrophin in astroglial cells, is 
induced by the herbal formula  (55) . Because NGF contributes 
to the maintenance of CNS functions including regulation of 
the cholinergic system  (56, 57) , an investigation of how DEX 
infl uences the secretion of NGF is needed for future studies. 

 Interestingly, it has been shown that corticosterone regulates 
synaptic properties of POMC and NPY neurons in the hypo-
thalamic arcuate nucleus. By using the electron micrograph 
technique, Gyengesi et al. examined synaptic input on POMC 
and NPY neurons following ADX and found that the number of 
putative  ‘ inhibitory ’  synapses on POMC neurons was decreased 
whereas that of putative  ‘ excitatory ’  synapses on NPY neurons 
was decreased  (10) . As a result of the reduced number of inhibi-
tory synaptic inputs, the frequency of mIPSCs (miniature inhib-
itory postsynaptic currents) and mEPSCs (miniature excitatory 
postsynaptic currents) recorded from each POMC neuron was 
decreased and increased, respectively. Postsynaptic regulation 
by glucocorticoids has also been reported. Using a transcranial 
two-photon microscope, Liston and Gan observed an increase 
in spine turnover (formation and elimination of spine) in the 
barrel cortex of mice after single corticosterone injections as 
soon as 5 h post-treatment  (58) . Although it is established that 
chronic stress indeed alters dendritic morphology and induces 
spine loss  (59, 60) , such an acute spine turnover by glucocorti-
coids in the  in vivo  approach is remarkable. 

 Although GR and MR are well-known transcription factors 
regulating expression of many genes, growing evidence sug-
gests that rapid nongenomic functions (without gene expres-
sion) of GR and MR are also involved in synaptic function. 
Di et al. reported that DEX suppressed glutamatergic trans-
mission of magnocellular neurons in the hypothalamus 
within 10 min while  γ -aminobutyric acid (GABA) release 
was facilitated  (61) . They also showed that retrograde release 
of endocannabinoids and neuronal nitric oxide (NO) contri-
buted to the suppression of glutamate release and the facilita-
tion of GABA release, respectively  (62) . Furthermore, it was 
reported that DEX rapidly potentiated GABAergic transmis-
sion in the CA1 region through membrane-bound GR and NO 
release from pyramidal neurons  (63) . The fast nongenomic 
function of MR that is involved in corticosterone-induced 
enhancement of glutamate release in CA1 pyramidal neurons 
was also suggested  (64) . Taken together, GR modulates syn-
aptic connectivity via transcription regulation and/or nonge-
nomic function.  

  Growth factor regulation by glucocorticoids 

 BDNF has been linked to the pathophysiology of depression as 
well as the mechanism of antidepressant action [for a review, 

see  (65 – 67) ]. As expected, several reports indicate possible 
glucocorticoid regulation on expression/function of growth 
factors including BDNF. Regarding the effect on the neurotro-
phin family and their receptors, early postnatal corticosterone 
administration in rats results in both NGF and neurotrophin-3 
mRNA level increases as well as increases in receptors TrkA, 
TrkB and TrkC in hippocampal tissue  (68) . Specifi cally, glu-
cocorticoid-mediated regulation of BDNF expression  in vivo  
is well known. In 1995, Smith et al. found a decrease in BDNF 
after 2-h restraint stress exposure  (69) . Upregulation of BDNF 
mRNA after ADX was also demonstrated in the CA3 fi eld of 
hippocampal tissue  (70) . In a later study, ADX-induced upre-
gulation, as well as corticosterone-induced downregulation, of 
BDNF mRNA in hippocampal subfi elds was also documented 
 (71) . The attenuation of BDNF transcription seems to be most 
obvious 4 h after corticosterone administration  (72) . Recently, 
Park et al. discovered DEX-induced anxiety-like behavior 
followed by benefi cial recovery effects by mecamylamine, 
an antagonist of nicotinic acetylcholine receptors  (11) . They 
clearly showed that rats injected with DEX exhibit increased 
anxiety-like behavior and decreased levels of BDNF signal-
ing, including phosphorylated extracellular signal-regulated 
protein kinase (pERK) and pCREB in cerebral cortex, which 
was ameliorated by mecamylamine administration  (11) . Using 
cultured cortical neurons, we recently reported that pretreat-
ment with glucocorticoids inhibits neurotransmitter release 
and upregulation of synaptic proteins stimulated by BDNF 
 (13, 73) . It is well established that BDNF mainly triggers three 
intracellular pathways following TrkB stimulation, includ-
ing ERK, phosphoinositide 3-kinase (PI3K) and phospho-
lipase C γ  (PLC γ ), and exerts its biological infl uence on the 
neuronal population via these intracellular signaling cascades 
 (74, 75) . We confi rmed that BDNF enhances expression lev-
els of synaptic proteins including glutamate receptors, such as 
NR2B, and that upregulation of synaptic proteins after BDNF 
application is dependent on the ERK pathway. Furthermore, 
BDNF-dependent ERK activation is attenuated by gluco-
corticoids in cultured cortical neurons  (73) . In our cortical 
cultures, marked downregulation of GR protein is induced 
after chronic DEX application (24 – 48 h). We observed that 
BDNF-induced neurotransmitter release is attenuated after 
such GR downregulation, suggesting that GR plays a role in 
BDNF-mediated synaptic function  (13) . We also confi rmed 
that interaction between GR and TrkB plays an important role 
in BDNF-induced neurotransmitter release from cortical neu-
rons, suggesting an involvement of nongenomic function of 
GR  (13) . By contrast, increased activity of TrkB is induced 
by acute glucocorticoid application. In rats, 6 h after DEX 
injection and 3 h after corticosterone treatment, activation of 
TrkB in both hippocampal tissue and cultured cortical and hip-
pocampal neurons occurs, respectively  (12) . By contrast, the 
receptor for FGF was not activated by corticosterone stimula-
tion  (12) . Possible involvement of bFGF in mood disorders is 
also suggested, in that elevated levels of bFGF may decrease 
the risk for mood disorder vulnerability including depression 
 (76) . As expected, FGF also exerts antidepressant-like effects 
 (77) , making the specifi city of glucocorticoids on Trk receptor 
stimulation more interesting. 
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 Recently, BDNF regulation of CRH homeostasis has been 
reported  (78) . As mentioned above, CRH is an essential 
regulator of the HPA axis, regulating levels of ACTH in the 
anterior pituitary and of glucocorticoids in the adrenal cortex. 
BDNF induces CRH expression via CREB signaling, whereas 
glucocorticoids deactivate the CRH increase via neutralizing 
the function of CRTC2, a CREB coactivator  (78) . 

 In multiple sclerosis (MS), in which chronic infl ammation 
of the CNS occurs, corticosteroids are used for treatment. 
Because demyelination is involved in the pathophysiology 
of MS, the glial response to glucocorticoids is imperative. 
Recently, Clarner et al. discovered that DEX and methylpred-
nisolone increase myelin basic protein and proteolipid pro-
tein in cultured oligodendrocyte progenitor cells  (79) . They 
also showed that DEX induces upregulation of bFGF and 
platelet-derived growth factor- α  in astrocytes, although insu-
lin-like growth factor 1 is downregulated  (79) . Considering 
that infl ammation is also suggested to contribute to the 
pathophysiology of depression  (80) , it may be valuable to 
investigate how these growth factors (derived from glial cells) 
infl uence the HPA axis in depression.  

  Expert opinion 

 Considering that dysfunction of the HPA axis is assumed to 
play a central role in the pathogenesis of depression, under-
standing the basic mechanisms underlying the negative infl u-
ence of glucocorticoids on brain function is critical for the 
development of effective treatments. There are, however, two 
major barriers impeding progress of this fi eld. First,  ‘ pulsatile ’  
activity of the HPA axis, which produces an hourly  ‘ ultradian 
rhythm ’  of oscillatory glucocorticoid secretion and changes 
its blood concentration periodically  (81) , may make it more 
diffi cult to stably determine exact levels of circulating gluco-
corticoids. The second problem is sex differences. Although 
circulating sex steroids, such as estrogen infl uence HPA axis 
function, most studies on stress and glucocorticoids on brain 
function and behavior have been determined by using male 
animals or humans  (82) . Ultimately, better understanding of 
the physiological meaning behind glucocorticoid release and 
sex differences in HPA axis regulation are required to launch 
a successful intervention alleviating depressive symptomato-
logy in all individuals. 

 Stress and the resultant increase of glucocorticoids sup-
press GR expression in the animal model of depression 
(Table 1). The marked reduction of GR is also confi rmed in an 
 in vitro  model  (13) . Thus, the attenuation of GR function and/
or GR-inducible genes in the neuronal population may con-
tribute to disease progression, although further studies are nec-
essary. Furthermore, one of the drawbacks of previous studies 
regarding the role of GR in depression is the lack of anhedonia 
in the phenotypic milieu of all subjects, as it is a core symptom 
of major depressive disorder  (83) . The pioneering studies that 
reveal a relationship between GR in dopamino ceptor neurons 
and reward have been reported  (84, 85) . 

 The relationship between GR and synapse-related mole-
cules has been a popular topic of current research. Specifi cally, 

BDNF function has been extensively studied, as BDNF is 
essential for synaptic plasticity. Recently, it has been reported 
that expression of CRH, which infl uences downstream gluco-
corticoid levels, is regulated by BDNF  (78) . Such an  in vivo  
approach concerning growth factor contribution in HPA axis 
regulation is necessary for further understanding of glucocor-
ticoid-related brain diseases. Furthermore, other growth fac-
tors, including bFGF, are expected to have benefi cial effects 
against depression  (76) . In the near future, a functional asso-
ciation between bFGF (derived from glial cells) and glucocor-
ticoids/HPA axis should be clarifi ed to understand the varied 
presentations of the depressive phenotype.  

  Outlook 

 Although we have focused on GR/glucocorticoid function 
in this review, future research should investigate the biologi-
cal etiology for the functional differences between GR and 
MR using both  in vivo  and  in vitro  rodent models. These two 
types of receptors have different affi nities for glucocorticoids 
and diverse distributions within the brain. Furthermore, new 
techniques to monitor circulating corticosteroids and growth 
factors in rodents will allow us to illustrate detailed rela-
tionships among these key molecules and changes in brain 
function which are related to depressive behaviors. Although 
the role of GR and BDNF in animal models of depression 
has been elucidated, further study into their interaction is 
necessary to discover links between these molecules and 
behavioral outcomes.  

  Highlights  

   A close relationship exists between HPA axis dysfunction • 
and depression. It is possible that resultant increases in glu-
cocorticoid levels due to HPA axis dysfunction play a role 
in the onset of depressive behavior, and GR contribution is 
speculated to be highly integral to this process.  
  Glucocorticoids infl uence neuronal survival and synaptic • 
function in the CNS. Generally, long-term exposure with 
glucocorticoids has a negative impact on survival and 
synaptic function.  
  Glucocorticoid regulation of growth factor expression, in-• 
cluding neurotrophins, is very important, as growth factors 
contribute to cell survival and function in the CNS.  
  We suggest that in addition to neurotrophin BDNF, possible • 
interplay between other growth factors and glucocorticoids/
HPA axis may be important to fully understand the depres-
sive phenotype.      
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