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   Abstract 

 Telomere composition and structure have been studied in 
several arthropods allowing us to better understand the evo-
lution of such an important portion of the eukaryotic chro-
mosomes. Genes coding for telomerase reverse transcriptase 
(TERT) have been sequenced and studied in few arthropod 
species only, where they resulted highly transcribed also in 
somatic tissues suggesting a different TERT regulation in 
respect to vertebrates. Contrary to the strict conservation of 
telomeres, subtelomeric regions were more polymorphic and 
heterogeneous in composition and frequently contained ret-
rotransposable elements that strongly infl uenced subtelomere 
evolution.  
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   Introduction 

 Telomeres, from the Greek words for  ‘ end ’  ( telos ) and  ‘ part ’  
( meros ), are specialized structures constituting the end of 
each eukaryotic chromosome  (1) . They are involved in the 
protection of chromosome ends from erosion by exonu-
cleases, and they avoid chromosome stickiness that could 
result in erroneous chromosome segregation during cell 
divisions  (1, 2) . Interestingly, as assessed in early work by 
McClintock and Muller and recently reviewed by Chan and 
Blackburn  (3) , normal chromosome ends lack the sticki-
ness of chromosome breaks so that broken chromosomal 
ends often fuse with each other, whereas the telomeres do 
not  (3) . 

 As a consequence of the inability of DNA polymerase to 
fully replicate the 3 ′  end of the DNA strand  (1, 2) , telomeres 
are partially lost at each replication cycle in most of somatic 
cells  (1) . This loss can be faced by telomere elongation medi-
ated by reverse transcription based on telomerase, a highly 
conserved ribonucleoprotein present from unicellular eukary-
otes to fl owering plants and vertebrates  (4) . Nevertheless, 

not all the cells possess a transcriptionally active telomerase 
gene, and the progressive loss of the telomere repeats at the 
chromosome ends regulates both senescence and life span in 
somatic cells  (4 – 6) . The progressive loss of telomeric DNA in 
somatic cells can also act as a tumor suppressor mechanism 
making telomeres interesting also for understanding complex 
processes, such as aging and carcinogenesis, and explaining 
much of the current interest in the chromosomal ends  (6, 7) . 

 Telomere research became, in the last decades, a main-
stream topic with papers facing telomere structure and func-
tions from cell biology to oncology making impossible to 
review all the aspects in a comprehensive manner. In view 
of this assumption, we have decided to focus this review, as 
much as possible, on recent observations related to arthropods 
with canonical telomere/telomerase system.  

  Telomere composition and structure 

 Telomeres are generally composed of lengthy stretches of a 
simple repeat with a consensus sequence (T x A y G z )  n  . Telomeric 
DNA typically ends in a single-strand G-rich overhang of 
50 – 300 nucleotides at the 3 ′  end that provides the basis for 
formation of non-Watson-Crick structures, such as G-quartets 
and t-loops  (3)  (Figure  1  ). In particular, t-loops protect telo-
meres by physically stitching the potentially vulnerable 
single-stranded G-strand terminus back into the double-
stranded telomere sequence  (8) . According to literature data, 
t-loops also arrest the action of telomerase that extends telo-
meres, preventing their further lengthening  (8) . 

 The composition of telomeres may vary in eukaryotes, even 
if a strict conservation has been observed in some taxonomic 
groups so that the hexameric (TTAGGG)  n   repeat is typical of 
vertebrates and other animals  (9) , the sequence (TTTAGGG)  n   
is common in plants  (10) , and the (TTAGG)  n   telomeric repeat 
has been isolated in many of the main insect lineages and in 
other arthropods  (11 – 16) . 

 The length of the repeats has been evaluated in different 
species and varies not only between chromosomes  (17) , but 
also between species  (11 – 13) . In particular, telomere length 
evaluation, performed by telomere digestion with the exo-
nuclease  Bal 31, indicated that the TTAGG terminal arrays 
of the lepidopterans  Bombyx mori  and  Mamestra brassicae  
were about 6 – 9 kb long  (11, 12) . Further analyses, performed 
to evaluate the telomere length by digestion with restriction 
enzymes, revealed the presence of telomeric arrays longer 
than 21 kb in Pancrustacea  (13) . Similar results have been 
recently reported in the crustaceans  Metapenaeus macleayi , 
 Sagmariasus verreauxi , and  Jasus edwardsii , where a telo-
mere length of 10 – 20 kb has been assessed suggesting con-
siderable lengths of the telomeric DNA in arthropods  (18) . 
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 Among insects, the (TTAGG)  n   repeat has been reported 
in Hymenoptera, Lepidoptera, Hemiptera, Trichoptera, and 
Megaloptera, but it seems to be absent in Ephemeroptera, 
Odonata, Dermaptera, and in the suborder Heteroptera 
 (15) . Moreover, the telomeric repeats are absent in the 
clade Antliophora (Diptera, Siphonaptera, and Mecoptera), 
where long repeated sequences (as in the non-biting midge 
 Chironomus pallidivittatus )  (19)  or retrotransposable ele-
ments (as reported in the fruit fl y  Drosophila melanogaster ) 
 (20, 21)  replace the canonical telomere-telomerase system, 
thus indicating that telomere elongation is telomerase-
independent in some insects  (21, 22) . Furthermore, hetero-
geneity in the composition of telomeres has been observed 
in Coleoptera and Neuroptera  (13) , suggesting that the 
(TTAGG)  n   sequence is the ancestral motif of telomeres in 
insects. However, this telomeric repeat has been repeat-
edly lost or replaced with other motifs during insect evo-
lution, also including alternative mechanisms of telomere 
elongation. 

 About 20 years ago, the (TTAGG)  n   sequence was identi-
fi ed as a component of telomeres and also in the crustaceans 
 Gammarus pulex   (14)  and  Penaeus semisulcatus   (11) , and 
more recently, Vitkova et al.  (13)  identifi ed the (TTAGG)  n   
repeat in several species belonging to Pancrustacea, 
Myriapoda, Chelicerata, and Pycnogonida suggesting that 
this motif represents an ancient telomeric sequence for 
arthropods. 

 Despite its ancient origin, the (TTAGG)  n   repeat seems 
to be derived from a more ancient sequence. In particular, 
as hypothesized by Vitkova et al.  (13) , the (TTAGGG)  n   
motif seems to be much older than the (TTAGG)  n   
sequence. Indeed, telomeres made by TTAGGG arrays are 

 Figure 1    The most common telomere structure in insects consists 
of a (TTAGG)  n   repeat at each chromosome end, with telomeric DNA 
forming a particular folding (T loop) to stabilize and protect the chro-
mosomal ends.    

common in bilaterian animals (including Cephalochordata, 
Echinodermata, Onychophora, Platyhelminthes, Annelida, 
and Mollusca) so that it could be possible to hypothesize 
that the TTAGG motif evolved from the ancestral TTAGGG 
telomeric sequence.  

  Synthesizing telomeres using the telomerase 

reverse transcriptase (TERT) 

 Telomerase is a specialized reverse transcriptase consisting 
of a telomerase RNA-binding domain (TRBD), made up of  α  
helices and two short  β  sheets, and the catalytic TERT domain 
capable of extending the 3 ′  end of chromosomes by adding 
telomeric repeats  (23 – 25) . 

 Telomerase coding genes have been identifi ed in the insects 
 Apis mellifera ,  Acyrthosiphon pisum ,  Tribolium castaneum , 
 B. mori , and they encode for a 600- to 800-amino acid-long 
peptide with a 14 – 20 %  sequence identity to the vertebrate 
homologues  (9, 26 – 28) . 

 The four insect telomerases contain the same functional 
domains, but not all the motifs identifi ed in the TERT of other 
eukaryotes. As fi rst reported by Robertson and Gordon  (17) , 
the insect TERT presented seven conserved motifs (identifi ed 
as 1, 2, A – E) defi ning the core RT domain, together with the 
TERT-specifi c T motif located immediately upstream to the 
core RT domain. The T motif is typical of TERT and absent 
in other reverse transcriptases not related to telomere synthe-
sis  (9) . Different from vertebrate TERTs, insect telomerases 
miss the CP, GO, and QFP domains that have been identifi ed 
in the N-terminal of the vertebrate TERT. These domains are 
also absent from  Caenorhabditis elegans  and  Giardia lamblia  
telomerases  (29)  easily distinguishing vertebrate and inverte-
brate telomerase reverse transcriptases. No conserved domains 
specifi c to the insect TERTs have been identifi ed  (9) . 

 TERT is highly regulated in human cells at both trans-
criptional and posttranscriptional levels so that most of the 
normal somatic cells lacks telomerase activity, whereas 
telomerase activation is observed in proliferating (such as 
activated lymphocytes) and cancer cells  (30) . Insect telo-
merases seem to be differently regulated as aphid TERT is 
highly expressed in different body parts, such as gut and 
head  (26) , in full agreement with Sasaki and Fujiwara  (31)  
reporting telomerase activity in different organs and tissues 
of crickets and cockroaches. A somatic TERT expression 
was also evidenced in  A. mellifera  and  B. mori  where low 
amounts of telomerase mRNAs have been found in several 
tissues  (27, 28) . Interestingly, a weak telomerase activity was 
observed in different adult human tissues, but it is not suf-
fi cient to prevent telomere shortening. It could be therefore 
intriguing to further go in-depth in the study of TERT activ-
ity in insects, and in particular in  A. mellifera  and  B. mori , in 
order to better comprehend the role of telomerase expression 
in the somatic tissues of these insects. 

 Consistent with the lack of a (TTAGG)  n   repeat, genes 
encoding for telomerase have been not identifi ed in the dip-
teran genomes  (32, 33) .  
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   De novo  synthesis of telomeres 

 Breakages of DNA double helices may result in chromo-
somal rearrangements, such as deletions, duplications, 
inversions, and translocations. However, in order to have 
recoverable chromosomal rearrangements, non-telomeric 
(broken) chromosome ends should not persist in the cell, as 
they induce cell cycle checkpoints arresting the cell cycle 
progression  (34 – 37) . Indeed, telomeres are involved in the 
chromosome stabilization, and broken non-telomeric chro-
mosomal ends cannot replicate properly becoming highly 
unstable, and they have the propensity to fuse together 
 (34 – 37) . 

 Human telomeres are protected by the shelterin  complex, 
which comprises six proteins that bind chromosomal ends in 
a sequence-dependent manner  (36) . Recent works showed 
that  Drosophila  telomeres are capped by a complex of 
 fast-evolving proteins (called terminin) that is functionally 
analogous to shelterin  (37) . None of the terminin proteins 
is evolutionarily conserved outside the  Drosophila  species 
suggesting that fl ies rapidly evolved terminin to bind chro-
mosome ends in a sequence-independent fashion probably 
slightly before the loss of telomerase  (37) . 

 Telomere stabilization may also involve the addition of 
repetitive telomeric sequences at the breakpoints by telo-
merase ( de novo  telomere synthesis). Hence, the addition of 

telomeric repeats results in the stabilization of the new chro-
mosome end, and it allows the resumption of cell cycling  (34, 
35) . Stabilization of broken chromosome ends by telomere 
sequence addition has been observed in many organisms, 
from yeast to man  (34, 35) , but until now in three insect spe-
cies only (the dipteran  D. melanogaster  and hemipterans 
 Planococcus lilacinus  and  A. pisum )  (21, 26, 38) . 

 The presence of  de novo  synthesis is particularly interest-
ing in aphids (Figure  2  ) and coccids as they both have holo-
centric/holokinetic chromosomes possessing centromeric 
activity spread along the whole chromosomal axis  (39, 40) . 
This peculiar chromosome feature, coupled with the  de novo  
telomere synthesis stabilizing the breakpoints, allows a proper 
stabilization of chromosomal fragments assuring their inheri-
tance during cell divisions.  

  Looking below telomeres: the subtelomeric 

regions 

 Different from the conservation of the telomeric sequences, 
insect subtelomeric regions are more polymorphic and vari-
able in composition. As a general rule, repetitive telomere-
associated sequences (TAS) have been commonly found 
in the subtelomeric region of various insect species, such 
as the 169-bp MpR satellite DNA sequence in the aphid 

 Figure 2    The aphid  M. persicae  is one example of an insect telomere with canonical telomerase and (TTAGG)  n   repeat. FISH with the 
FITC-labeled (TTAGG)  n   probe (A ,  B) evidenced that each chromosomal end consists of an array of the TTAGG motif, not only in a standard 
karyotype (A), but also in metaphase plates where a fragmentation occurred suggesting that a  de novo  synthesis of telomeres occurred (B). In 
view of the presence of the MpR subtelomeric satellite at each autosome subtelomeric end (C), it has been possible to distinguish standard (D) 
and neo-synthesized telomere (E) by fi ber FISH. In standard telomere, FISH on DNA fi bers stained with DAPI (in blue) showed the presence 
of the TTAGG array (in red due to the use of a TRITC-labeled telomeric probe) near the cluster of the MpR subtelomeric satellite (labeled in 
green in view of the use of a FITC-labeled probe) (D). The MpR subtelomeric array is absent from  de novo  telomeres (E). Asterisks indicate 
the chromosomal ends involved in fragmentation. Arrows indicate X chromosomes.    
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 Myzus persicae   (41)  (Figure 2) and the highly conserved 
9-kb long terminal unit (LTU) identifi ed in the Taiwan 
cricket  Teleogryllus taiwanemma   (42) . Both these repeti-
tive sequences were located at almost all the subtelomeric 
regions and were species-specifi c or, at most, present in a 
few highly related species. Indeed, the 169-bp MpR subte-
lomeric satellite has been found in  M. persicae ,  Myzus antir-
rhinii , and  Myzus certus , but absent in other aphid species 
 (41) . Similarly,  T. taiwanemma  LTUs resulted absent in other 
crickets, including the Japanese fi eld cricket  Teleogryllus  
 emma  that is thought to be one of the species closest to the 
Taiwan cricket  T. taiwanemma   (42) . As a whole, it emerges 
that TAS sequences have been rapidly amplifi ed in subtelo-
meric regions by recent evolutional events and may act as 
a backup system to prevent telomere shortening when the 
telomerase activity is blocked  (43) . 

 Interestingly, the TASs identifi ed up until now bear a 
structural resemblance to  Chironomus  TA repeats  (44) , 
which evolved from telomeric repeat sequences and trun-
cated retrotransposons  (19, 44, 45)  suggesting that ret-
rotransposons could be common elements located below 
telomeres and their evolution shaped the structure of the 
subtelomeric regions. 

 The presence of non-LTR retrotransposons has been fre-
quently reported in insects and TRAS and SART retrotrans-
posons have been isolated from the subtelomeric regions of 
the lepidopterans  B. mori ,  Dictyoploca japonica ,  Samia cyn-
thia   ricini , and  M. brassicae   (11, 12, 46) . Furthermore, TRAS 
elements have been annotated in the genome projects of the 
aphid  A. pisum   (47)  and the beetle  T. castaneum   (48) . 

 More than 2000 copies of non-LTR retrotransposons 
belonging to the TRAS and SART families have been identi-
fi ed in  B. mori  proximally to the (TTAGG)  n   repeats. TRAS 
and SART were abundantly transcribed and actively ret-
rotransposed into the TTAGG telomeric repeats in a highly 
sequence-specifi c manner  (11) . Surprisingly, no insertions of 
non-LTR or any other retrotransposons have been reported in 
the subtelomeric regions of  A. mellifera   (9, 27) . 

 Subtelomeric regions are therefore composed of com-
plex patchwork of different moderately and highly repeated 
sequences, interspersed into degenerate telomeric repeats 
 (49) . Moreover, the subtelomeric regions of most organ-
isms are dynamic with frequent turnover and exchange of 
sequences  (49) . 

 Despite their sequence variation, arthropod chromosome 
ends are similar in structure suggesting the existence of shared 
functional constraints that require this chromosomal region 
 (49) . At present, the functional roles of subtelomeric regions 
have been not deeply studied in insects, but  Drosophila , in 
spite of its exception in the telomere structure, is furnishing 
new insights about insect telomeres and subtelomeres  (50) . 
For instance, fl y TAS sequences are involved in a silencing 
phenomenon (called telomeric position effect) that is due to 
a specifi c chromatin conformation of the TAS located in the 
subtelomeric regions of chromosomes  (51) . 

 TAS elements can also regulate telomere length in different 
ways  (52) . Hence, telomere growth is likely to be regulated by 
the organization of the subtelomeric chromatin so that at each 

telomere, the telomeric complex and subtelomeric chromatin 
cooperate to form a unique higher-order chromatin structure 
that controls telomere length  (52) . Last, TAS elements can act 
as transcription initiation sites for telomere repeat-associated 
transcripts that can negatively regulate the telomerase-depen-
dent telomere elongation  (53) .  

  To be continued... over the end 

 In the last years, several studies faced different aspects of 
telomere structure and genetics, including a large number of 
papers that analyzed chromosomal ends in non-model organ-
isms. This approach leads to a much deeper understanding 
of the origin, nature, and evolution of telomeres and their 
maintenance systems. Recently, telomeric repeat-associated 
siRNAs (tel-siRNAs) have been isolated in plants, and they 
resulted conserved in a wide range of crop species showing 
that tel-siRNAs have a potential regulatory role in telomere 
dynamics  (54) . The presence of tel-siRNAs associated to telo-
meric chromatin has not been deeply analyzed in insects, with 
the exception of  D. melanogaster   (53) , making the compre-
hension of non-coding RNA involvement in the regulation of 
telomere functioning a new frontier in the telomere biology. 
Despite several decades of studies, new discoveries about 
telomere epigenetics are clearly showing that telomere stud-
ies are quite far from the end.   
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