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   Abstract 

 The scavenger receptor (SR) super family consists of inte-
gral membrane glycoproteins that are involved in recognition 
of polyanionic structures of either endogenous (e.g., oxi-
dized low-density lipoprotein) or exogenous (e.g., bacterial 
lipopolysaccharides) origin. SRs are structurally diverse and 
can be classifi ed into seven different classes (A – G) based on 
the multidomain structure of the individual members. SRs are 
present on various types of tissues, such as vascular, adipose, 
and steroidogenic tissues. In addition to modifi ed lipoprotein 
uptake, these proteins are also known to regulate apoptotic 
cell clearance, initiate signal transduction, and serve as pat-
tern recognition receptors for pathogens. Different SRs are 
involved in many physiological and pathological processes; 
more importantly, the function of SRs is highly implicated 
in the initiation and progression of atherosclerotic plaque. 
Targeting the SR gene products that mediate the response to 
and uptake of modifi ed lipids holds great promise in the pre-
vention of cardiovascular diseases. Inhibition of SR expres-
sion using a combined gene therapy and RNA interference 
strategy also appears to be an option for long-term therapy. 
The present review focuses on the involvement of SRs in 
atherosclerosis, thrombosis, and other cardiovascular dis-
eases. Moreover, the role of SRs is not restricted to vascular 
lesions; it is also implicated in a number of different cellular 
functions.  
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  Introduction 

 Scavenger receptors (SRs) comprise a structurally diverse 
group of membrane-bound proteins that are involved in 
cholesterol and lipoprotein metabolism. SRs were initially 
identifi ed as macrophage receptors based on their ability to 
recognize modifi ed lipoproteins  (1) . Several classes of SRs 
(from A to G) have been identifi ed so far depending on the 

presence of shared structural domains; however, there is a great 
structural diversity among different classes (Figure  1  )  (2) . 
SRs are present on different tissues including macrophages, 
monocytes, platelets, endothelial cells, smooth muscle, and 
epithelial cells. In addition to vascular tissues, they also 
have been detected in adipose and steroidogenic tissues  (2) . 
SRs bind to a wide range of ligands including modifi ed high 
density lipoprotein (HDL), low density lipoprotein (LDL) 
particles, and other polyanionic ligands such as acetylated low-
density lipoprotein (AcLDL), oxidized low-density lipopro-
tein (OxLDL), Gram-positive and Gram-negative bacteria, 
apoptotic cells,  β -amyloid fi brils, and advanced glycation end 
products (AGE) (Table  1  )  (3) . Because of its ability to bind 
diverse ligands and perform multiple functions, SRs have the 
potential to be involved in many physiological and pathologi-
cal processes such as homeostasis, apoptotic cell clearance, 
and innate immunity. More importantly, these receptors have 
been highly implicated in atherosclerotic plaque initiation and 
progression as well  (4) . 

 Targeting the SR gene products that mediate the response 
to and uptake of modifi ed lipids holds great promise in the 
prevention of cardiovascular diseases. The present review 
emphasizes the role of these receptors in atherosclerosis, 
thrombosis, and other cardiovascular complications.  

  Class-A SRs 

 Class-A SRs are trimeric transmembrane glycoproteins that 
are expressed primarily by macrophages and bind a variety 
of ligands, including modifi ed lipoproteins, bacterial prod-
ucts, and extracellular matrix proteins (Table 1). Class-A SRs 
mediate ligand internalization as well as cell adhesion  (5, 6) . 
Class-A SRs comprise at least four types of receptors: scaven-
ger receptor A (SR-A), macrophage receptor with collagenous 
structure (MARCO), scavenger receptor with C-type lectin 
(SRCL), and scavenger receptor A-5 (SCARA5)  (7 – 9) . 

 SR-A are largely found on macrophages, but are also 
present on platelets, endothelial cells, and vascular smooth 
muscle cells. These receptors are postulated to be proathero-
genic due to their ability to mediate uptake of OxLDL in 
macrophages and platelets  (10, 11) . Initial studies of SR-A-
null (Msr -/- ) mice were performed in atherosclerosis-suscep-
tible ApoE-defi cient (ApoE -/- ) mice on a hybrid background 
(ICR/129) fed a chow diet; animals showed a 58 %  decrease 
in aortic sinus atherosclerosis lesion area compared with 
ApoE -/-  littermates  (11) . The combined action of cluster dif-
ferentiation 36 (CD36) (another class-B SR) and SR-A has 
been well demonstrated via a new mechanism in which 
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platelet activation is stimulated by the combined action of 
CD36 and SR-A. The results showed that combined blockage 
of CD36 and SR-A completely shut down the p38 mitogen 
activated protein kinase (MAPK) phosphorylation induced by 
OxLDL, but had no effect on native LDL signaling activities. 
Activation of p38 MAPK by OxLDL enhanced the adhesion 
of platelets and blocking these two receptors signifi cantly 
reduced the adhesion of platelets to immobilized fi brinogen. 
Further study using murine platelets that were defi cient in 
either CD36 or SR-A shows that these two SRs are required 
for OxLDL signaling in platelets  (12, 13) . Recently, M ä kinen 
et al. have studied the role of SR-A and CD36 in foam cell 
formation and atherogenesis by RNA interference  (14) . They 
employed RNA interference (RNAi)-mediated silencing to 
downregulate the expression of these receptors. They found 
that decreased SR-A but not CD36 expression led to reduced 
foam cell formation caused by AcLDL in mouse macrophage, 
whereas the uptake of OxLDL was not altered. More impor-
tantly, silencing of SR-A upregulates CD36 and vice versa. 
In another set of experiment, when low density lipoprotein 
receptor (LDLR) -/- /ApoB 100/100  mice were kept on a Western 
diet, silencing of either SR-A or CD36 in bone marrow cells 

led to a marked decrease in lesion area, whereas simultaneous 
silencing of both receptors was not effective  (14) . 

 MARCO is expressed largely on macrophages and to a lower 
extent on dendritic cells  (15) . MARCO is implicated in host 
defense and pathogen clearance as binding to dead or apop-
totic cells, bacteria, and lipopolysaccharides (LPS) elevates 
MARCO levels  (16) . When challenged with  Streptococcus 
pneumoniae , wild-type (WT) mice could clear the infection, 
whereas this ability was impaired in MARCO -/-  mice, demon-
strating the role of MARCO in the innate immune response 
against pathogens  (17) . MARCO expression in human alveo-
lar macrophages also plays a crucial role in the innate immu-
nity against bacteria  (18) . However, the roles of MARCO in 
binding modifi ed LDL and in atherogenesis have been less 
well studied. 

 In contrast to the other class-A gene products, SRCL is 
detected on endothelial cells but not macrophages and are 
thought to be involved in innate immune response against 
fungal infections  (19, 20) . SCARA5 is also detected on epi-
thelial cells but not macrophages and may play a unique role 
in the innate immune system and atherosclerosis  (7) . In a 
study, it was found that catechin reduces atherosclerotic lesion 
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 Figure 1    A schematic showing the major SRs.    

 Table 1      Major SR and their ligands and expression profi les.  

SR Class Ligands Expression profi le

SR-A SR-A AcLDL, OxLDL,  β -amyloid, molecular chaperones, 
apoptotic cells, and activated B-cell, bacteria

Macrophages, mast, dendritic, endothelial, 
and smooth muscle cells

MARCO SR-A AcLDL, OxLDL, apoptotic cells, B cells, and 
bacteria

Macrophages and dendritic cells

CD36 SR-B OxLDL, HDL, LDL, VLDL,  β -amyloid, and 
apoptotic cells

Macrophages, platelets, adipocytes, epithelial, 
and endothelial cells

SR-B SR-B HDL, LDL, OxLDL, and apoptotic cells Monocytes/macrophages, hepatocytes, and 
adipocytes

Macrosialin/CD68 SR-D OxLDL Macrophages, and dendritic cells
LOX-1 SR-E OxLDL, apoptotic cells, activated platelets, and 

bacteria
Endothelial and smooth muscle cells, mac-
rophages, and platelets

SREC-I/II SR-F AcLDL, OxLDL, molecular, chaperones, and 
apoptotic cells

Endothelial cells and macrophages

SR-PSOX SR-G OxLDL and bacteria Macrophages, smooth muscle, dendritic, 
endothelial cells, and B and T cells
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development in ApoE-defi cient mice. The expression of 450 
genes was signifi cantly modifi ed by catechin supplementa-
tion. Genes involved in energy metabolism, lipid metabolism, 
and lipid traffi cking such as  FABP4 ,  LPL , and  SCARA5  were 
downregulated and may contribute to the atheroprotective 
effect of catechin  (21) .  

  Class-B SRs 

 Unlike the SR-A family, class-B SRs have multiple trans-
membrane domain receptors (Table 1). Class B contains 
three members: CD36, scavenger receptor class B member 
1 (SR-BI), lysosomal integral membrane protein II, and clus-
ter differentiation 163 (CD163)  (2) . Despite the high degree 
of homology between CD36 and SR-BI, these two recep-
tors appear to play distinct roles in lipid metabolism and 
atherosclerosis. 

  CD36 

 CD36 is an 88 kDa membrane glycoprotein that was fi rst 
identifi ed on monocytes by monoclonal antibody OKM5  (22) . 
CD36 has an unusual structural organization, with two trans-
membrane domains, two very short intracytoplasmic domains, 
and a large heavily glycosylated extracellular domain. Both 
of the intracellular domains contain pairs of cysteines that are 
fatty acid acylated, thus presumably closely opposed to the 
inner leafl et of the cell membrane  (23) . 

 CD36 is present on many mammalian cell types, including 
platelets, erythroid precursors, and microvascular endothe-
lium; most  ‘ professional ’  phagocytes (macrophages, dendritic 
cells, microglia, and retinal pigment epithelium); hepatocytes; 
adipocytes; cardiac and skeletal myocytes, epithelia of the 
gut, breasts, and kidneys  (24) . The diverse group of ligands 
that bind to CD36 consists of oxidized phospholipids, throm-
bospondin-1, collagen, various microbial pathogens, apop-
totic cells, fatty acids, and microbial diacylglycerides  (24, 
25) . CD36 affects very different cellular processes depending 
upon the nature of the ligand and the type and location of the 
cell that expresses it  (26) . 

 The function of CD36 is complex and has been associated 
with diverse physiological processes (for instance, uptake of 
modifi ed lipid and apoptotic cells, long-chain fatty acid trans-
port, adhesion, and angiogenesis), and its expression or defi -
ciency has been linked with several pathological conditions, 
such as atherosclerosis, diabetes, infl ammation, and cardio-
myopathy  (24) . Studies of mice with targeted deletion of the 
CD36 gene have shown that loss of CD36 confers protection 
from diet-induced atherosclerosis; this limits infl ammation 
and tissue infarction associated with acute cerebrovascular 
occlusion, but may increase susceptibility to certain infec-
tions  (27, 28) . 

 Further studies have confi rmed that the proatherogenic role 
of CD36 was highly likely to be mediated by the CD36 on 
macrophages, as transplantation of bone marrow from CD36-
null mice into ApoE-null mice had the same effect on athero-
sclerosis as seen in the ApoE/CD36-double-null mice  (27) . 

On macrophages, CD36 plays an important role in foam 
cell formation. Incubation of CD36-defi cient monocytes/
macrophages with OxLDL resulted in a 40 %  – 60 %  reduc-
tion in OxLDL binding and uptake compared to WT CD36-
expressing cells. Macrophages isolated from CD36-null mice 
have a profound defect in OxLDL uptake and foam cell for-
mation. Crossing the CD36-defi cient mice with a proathero-
genic ApoE-null animal resulted in a signifi cant protection 
from lesion development. More importantly, animals fed with 
a Western diet showed a 70 %  reduction in aortic lesion size 
and distribution  (29, 30) . 

 Although much is known about the mechanism of OxLDL 
interactions with macrophages, only recent studies have 
demonstrated that CD36 also mediates platelet responses to 
OxLDL and contributes to the procoagulant state associated 
with hyperlipidemia and oxidative stress  (31) . Podrez et al. 
demonstrated that CD36 might serve as a kind of primer or 
sensitizer for platelet activation leading to platelet hyperre-
activity in response to various forms of OxLDL or specifi c 
oxidized choline glycerophospholipids (oxPC CD36 ) that are 
formed during LDL oxidation. In hyperlipidemic CD36 -/- /
ApoE -/-  mice, the absence of CD36 signifi cantly protected 
these mice from the hyperlipidemia-related prothrombotic 
phenotype when compared to hyperlipidemic ApoE -/-  with-
out CD36 defi ciency  (32) .  In vitro , various forms of OxLDL 
and oxPC CD36  bind to human and mouse platelets in a CD36-
dependent manner. Binding of these ligands to CD36 resulted 
in platelet activation, characterized by the increased integrin 
 α IIb β 3 and P-selectin surface expressions  (33) . 

 A signifi cant increase in the extent and rate of aggregation 
of platelets from hyperlipidemic ApoE -/-  mice was compared 
to WT mice. This response was primarily blunted in plate-
lets from ApoE -/-  and CD36 -/-  mice. No signifi cant differences 
were observed between platelets from WT and CD36 -/-  mice 
on normal chow diet, thereby indicating that CD36 plays an 
important modulatory role in platelet function only in the set-
ting of hyperlipidemia. Similar results were obtained when 
platelets from hyperlipidemic LDLR -/-  mice were compared 
to platelets from LDLR -/-  and CD36 -/-  mice. Role of CD36 
in thrombosis is restricted to the dyslipidemic milieu, where 
there is enhanced oxidative stress that can generate specifi c 
ligands for CD36  (33) . 

 Dawson et al. identifi ed CD36 on endothelial surface that 
mediates its antiangiogenic activity. CD36-mediated anti-
angiogenesis is triggered by its ability to activate a specifi c 
signaling cascade that results in diversion of a proangiogenic 
response to an apoptotic response  (34) . Recently, Li et al. have 
shown that CD36 was abundantly expressed by murine arte-
rial smooth muscle cells and the absence of CD36 attenuated 
reactive oxygen species (ROS) production in response to fer-
ric chloride-induced vascular injury in a mouse carotid artery 
thrombosis model. These data suggest that CD36-mediated 
downregulation of antioxidant systems in vascular smooth 
muscle cells may contribute to its prothrombotic, proinfl am-
matory, and proatherogenic effects  (35) . 

 When CD36 binds to its ligands OxLDL and microparti-
cles, it transmits a signal to the cell. In macrophages, this sig-
nal leads to OxLDL internalization and foam cell formation, 
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whereas in platelets, it contributes to platelet activation and 
aggregation. It has been shown that these signals are relayed 
by a series of molecular interactions that involve specifi c 
tyrosine kinases from the Src family, serine/threonine kinases 
family, and MAPK family. The signal to the platelet is medi-
ated by a MAPK called c-Jun N-terminal kinase (JNK). 
CD36 -/-  mice had 16 %  less phosphor JNK than those from 
WT mice. Inhibition of platelet JNK signifi cantly prolonged 
the time to thrombosis in mice transfused with WT platelets, 
but had no effect in mice transfused with CD36 -/-  platelets. 
These data strongly suggested that CD36-mediated JNK sig-
naling promotes platelet activation and thrombus formation  in 
vivo   (36) , thereby indicating that CD36 has both a proathero-
genic and a prothrombotic role in the vascular system. 

 In addition to atherosclerosis, CD36 has also been impli-
cated in promoting chronic infl ammation in Alzheimer ’ s 
disease. Binding of  β -amyloid fi brils with CD36 initiates 
infl ammatory signaling pathways leading to microglial 
activation, ROS production, and secretion of cytokines 
and chemokines. Interestingly, amyloid ligands, including 
 β -amyloid and fi brillar apolipoproteins (C-II and A-I), have 
also been detected in human atheroma, and these ligands 
can initiate proinfl ammatory CD36 signaling that may drive 
infl ammation in the artery wall  (37, 38) .  

  SR-BI 

 SR-BI, an 82 kDa membrane glycoprotein, contains a large 
extracellular domain and two transmembrane domains with a 
short cytoplasmic N- and C-terminal tail. SR-BI is expressed 
on the surface of macrophages, platelets, and steroidogenic 
tissues mainly in the adrenals, ovary, hepatocytes, and to some 
extent on endothelial cells  (39) . Like CD36, it also binds to 
a variety of ligands including native lipoproteins, oxidized 
lipoproteins, AGE, and anionic phospholipids, and plays a 
pivotal role in cholesterol metabolism  (40) . 

 The major physiological function of SR-BI is to mediate 
the selective transport of cellular uptake of lipids, especially 
cholesteryl esters from HDL and the bidirectional fl ux of 
unesterifi ed cholesterol between cells and lipoprotein  (40) . 
Hepatic SR-BI regulates plasma lipoprotein metabolism, bil-
iary cholesterol secretion, and the structure and composition 
of plasma HDL particles. Overexpression of SR-BI protein 
in mouse liver has been found to be associated with reduced 
levels of plasma HDL cholesterol, thus implicating a possible 
role for SR-BI in the transport of cholesterol from peripheral 
tissues to the liver  (41) . Besides, there are a number of evi-
dences where SR-BI and CD36 have been described. 

 In an earlier study, it has been demonstrated that oxPC CD36  
bind specifi cally to SR-BI and that binding of oxPC CD36  pre-
vents HDL association because of the close proximity of 
the binding sites for these two ligands on SR-BI. Moreover, 
oxPC CD36  has been recognized as a potent inhibitor of SR-BI-
mediated uptake of cholesteryl esters in hepatocytes. Results 
obtained revealed that specifi c oxidized phospholipids that 
accumulated  in vivo  in oxidative stress may inhibit reverse 
cholesterol transport and contribute to the development of 
hypercholesterolemia and atherosclerosis  (42) . 

 Furthermore, the expression of SR-BI in lipid-laden mac-
rophages in human and murine atherosclerotic lesions  (43)  
implicates that SR-BI might play an important role locally 
in the arterial wall. On the one hand, SR-BI expression by 
macrophage may protect against atherosclerosis by stimulat-
ing cholesterol effl ux and preventing foam cell formation. On 
the other hand, its function in the uptake of both modifi ed and 
native lipoproteins might enhance foam cell formation, thus 
rendering macrophage SR-BI a proatherogenic factor  (44) . 
Zhang et al. demonstrated that inactivation of macrophage 
SR-BI promotes the development of atherosclerosis in ApoE-
defi cient mice in the absence of changes in plasma lipids, 
HDL subpopulations, and cholesterol effl ux  (45) . 

 Studies have also demonstrated that SR-BI in bone marrow-
derived cells facilitates the development of small fatty streak 
lesions in both LDLR -/-  mice on Western type diet for only 4 
weeks and in WT mice fed with a high-cholesterol diet. These 
data supported a unique dual role for SR-BI on bone marrow-
derived cells including macrophages in atherosclerotic lesion 
development  (46) . Furthermore, binding of HDL to SR-BI on 
endothelial cells induces the production of nitric oxide (NO) 
by upregulating endothelial NO synthase (eNOS) expression 
through a kinase cascade and has a protective effect on hyper-
cholesterolemia-induced vascular disease  (47) . 

 Imachi et al. reported reduced levels of SR-BI on platelets 
from atherosclerotic disease patients that were inversely cor-
related with the intracellular cholesterol content of platelets 
and their ability to aggregate  (48) . Disruption of SR-BI in 
mice resulted in a three-fold increase in free cholesterol lev-
els in the circulation, resulting in an unusually high plasma 
unesterifi ed to total cholesterol ratio (UC/TC)  (49) . Dole 
et al. described that the high UC/TC ratio observed in SR-BI-
defi cient mice is associated with thrombocytopenia due to 
high platelet clearance rates, increased intracellular cho-
lesterol content, and abnormal platelet morphologies  (49) . 
Recently, Korporaal et al. found that disruption of SR-BI in 
mice resulted in active circulating platelets, increased adher-
ence to immobilized fi brinogen, and increased susceptibility 
to arterial thrombosis  in vivo . Hence, SR-BI is essential not 
only for HDL cholesterol homeostasis and atherosclerosis 
susceptibility, but also for maintaining normal platelet func-
tion and prevention of thrombosis  (50) . 

 Furthermore, Ma et al. investigated the effect of SR-BI 
defi ciency on platelet aggregation and thrombosis. They 
found that SR-BI defi ciency alone, under normolipidemic 
conditions, does not lead to a major defect in platelet aggre-
gation, while hyperlipidemic milieu associated with non-bone 
marrow-derived SR-BI defi ciency is the major cause of the 
thrombocytopenia and abnormal morphology  (51) . 

 An earlier study by the same group has shown SR-BI as the 
platelet SR that mediates the antiplatelet activity of OxHDL. 
Interestingly, the antiplatelet effect of OxHDL/SR-BI com-
munication was independent of the eNOS/protein kinase B 
pathway, known to play a role in HDL/SR-BI-induced eNOS 
activation in endothelial cells. These results were sugges-
tive of a dual role played by SR-BI in platelet function and 
thrombosis. Studies using chimeric mice revealed that non-
bone marrow-derived SR-BI defi ciency leads to platelet 
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hyperreactivity and thrombocytopenia, and platelet-specifi c 
SR-BI is required for normal platelet responses  (52) . 

 Although CD36 and SR-BI have been shown to bind 
OxLDL with similar high affi nity, the metabolism of OxLDL 
by these two class-B SRs has not been compared directly. 
However, in a study, it was found that CD36 and SR-BI dif-
fer in their ability to internalize and degrade OxLDL. Both 
class-B SRs might play an opposite role not only in the con-
text of atherosclerosis, but also thrombosis; while CD36 pro-
motes a prothrombotic phenotype, SR-BI might counteract 
thrombus formation by suppressing platelet activation  (53) .  

  CD163 

 CD163 is found to be expressed on monocytes and mac-
rophages, in both membrane-bound and soluble forms. It 
plays an important role in the regulation of anti-infl ammatory 
responses, pathogen recognition, and atheroprotection prob-
ably through elevation in expression of heme oxygenase and 
in removing free hemoglobin  (54) . Patients with hematologi-
cal, infl ammatory, and lysosomal storage diseases also have 
a high level of soluble CD163, and it may thus serve as a 
biomarker for such conditions  (55) .   

  Class-D SRs 

 Class D is comprised of CD68 (Macrosialin) which are heav-
ily glycosylated type I transmembrane proteins and expressed 
in macrophages  (56) . Macrosialin levels are also observed to 
be increased by a proatherogenic diet. It has been identifi ed as 
a receptor for OxLDL  (57) . Macrosialin receptor is expressed 
in macrophage foam cells in atherosclerotic plaques of ApoE -/-  
mice, but its role in atherogenesis is unknown  (58) .  

  Class-E SRs 

 Class E comprises of just one member: the lectin-like OxLDL 
receptor 1 (LOX-1) (Table 1). It is a 50 kDa type II membrane 
glycoprotein which contains a short N-terminal cytoplasmic 
domain, a single transmembrane domain, and an OxLDL-
binding C-terminal extracellular C-type lectin-like domain 
 (59) . LOX-1 assembles on the cell surface in hexamer form or 
larger, comprising three homodimeric LOX-1 molecules bound 
to OxLDL. It is expressed on endothelial cells, macrophages, 
smooth muscle cells, and platelets. The ligands to which LOX-1 
binds comprise of oxidized LDL, apoptotic cells, activated 
platelets, and bacteria, thereby signifying its implication in the 
pathogenesis of atherosclerotic lesions  (60) . The contributory 
role of LOX-1 in atherogenesis is supported by several lines of 
evidence: (i) OxLDL via activation of LOX-1 induces endothe-
lial dysfunction/apoptosis, a major change in vascular biology 
seen at the beginning of atherogenesis  (61) ; (ii) LOX-1 expres-
sion is dynamically upregulated in pathological conditions such 
as diabetes, hypertension, and dyslipidemia  (62) . 

 Macrophage LOX-1 depletion inhibits foam cell forma-
tion, suggesting a role in atherosclerotic plaque initiation 

and progression. Importantly, the incidence of atherosclerotic 
plaques is signifi cantly lowered in LOX-1-defi cient mice  (63) . 

 In endothelial cells, ligand binding to LOX-1 SR stimu-
lates ROS production and both MAPK and nuclear factor-κ B 
activation, leading to increased expression of different adhe-
sion gene products. Such elevated expression in endothelium 
can enable monocyte infi ltration, ultimately leading to mono-
cyte differentiation and foam cell formation  (64) . 

 LOX-1 was identifi ed as a major binding protein for 
OxLDL on human platelets in addition to CD36. During 
platelet activation, fusion of  α  granule membranes with 
plasma membrane is followed by the translocation of LOX-1 
toward the platelet surface. Earlier studies have demonstrated 
that blocking of LOX-1 retards the ADP-induced platelet-
activation event, thus implicating its role in determining 
platelet physiology  (65) . Unlike CD36, LOX-1 is expressed 
only on activated platelets. This indicates that the two recep-
tors function in different phases of platelet function. LOX-1 
might be predominantly involved in thrombus formation, but 
does not appear to play a role in circulating resting platelets. 
When exposed on the activated platelet surface, it cross-links 
activated platelets and thus may stabilize thrombi or promote 
hemostasis  (66) .  

  Class-F SRs 

 Class F consists of the scavenger receptor expressed by 
endothelial cells I and II (SREC-I and SREC-II) which are type 
I transmembrane receptors containing N-terminal epidermal 
growth factor-like domains, a transmembrane domain, and a 
long cytoplasmic tail postulated to induce signal transduction 
 (4) . These receptors are expressed on mammalian endothelial 
cells and macrophages. They bind modifi ed lipoproteins such 
as AcLDL and OxLDL  (67) . Studies in SREC-I -/-  macrophages 
demonstrated that this receptor accounts for only 6 %  of total 
AcLDL degradation, suggesting that it plays a minor role in 
foam cell formation  (68) .  

  Class-G SRs 

 The chemokine (C-X-C) ligand 16 is a class-G SR that binds 
to phosphatidylserine and oxidized lipoprotein (SR-PSOX). 
SR-PSOX is highly expressed on macrophages, smooth 
muscle cells, dendritic cells, kidney, and B and T cells with 
lower levels detected on the endothelium  (69) . This recep-
tor is expressed in human and mouse atherosclerotic lesions, 
where it is present on endothelium, smooth muscle, and mac-
rophages  (70, 71) . It is also involved in acute and adaptive 
experimental autoimmune encephalomyelitis, CD8  +   T cell 
recruitment during infl ammatory valvular heart disease, and 
bacterial phagocytosis  (72) .  

  SRs as a potential therapeutic target 

 SRs have a proatherogenic and a prothrombotic role in 
the vascular system (Figure  2  ). Ligands of SRs such as 
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 Figure 2    SRs and their role in atherothrombosis.    

OxLDL, microparticles, and apoptotic cells are generated 
 in vivo  by oxidant stress, hyperlipidemia, infl ammation, and 
cancer  (29) . The ability to understand and modulate these 
mechanisms may offer new treatment strategies for patients. 
Therefore, targeting some SRs and their signaling path-
ways could be a strategy in the treatment of cardiovascular 
diseases. 

 Siegel-Axel et al. demonstrated that platelet-induced 
foam cell generation from progenitor cells could be par-
tially prevented by 3-hydroxy-3-methyl-glutaryl-coenzyme 
A reductase inhibitors and agonists of peroxisome prolifera-
tor activated receptor- α  and - γ . Furthermore, they cloned and 
characterized an immune-adhesion molecule which resembles 
the SR CD68 and binds its ligand OxLDL with high affi nity. 
CD68-Fc was found to bind to lipid-rich human atheroscle-
rotic plaque specimens. CD68-Fc was able to inhibit platelet-
mediated macrophage foam cell formation and specifi c func-
tions, such as matrix metalloproteinase-9 activity  in vitro . 
Thus, the inhibition of platelet-mediated foam cell formation 
may be a promising option to infl uence atherosclerotic plaque 
formation  (73) . 

 Recently, in a study, Hildebrand et al. investigated whether 
introduction of cholesteryl ester transfer protein (CETP) can 
normalize HDL-C transport to the liver and reduce athero-
sclerosis in SR-BI knockout (SR-BIKO) mice. They found 
that CETP restores HDL-C levels in SR-BIKO mice, but it 
does not change the susceptibility to atherosclerosis and other 
typical characteristics that are associated with SR-BI disrup-
tion  . This may indicate that the pathophysiology of SR-BI 
defi ciency is not a direct consequence of changes in the HDL 
pool  (74) . 

 Gene therapy can modulate SR function in atherosclero-
sis. Ectopic expression of membrane-bound SRs using viral 
vectors can modify lipid profi les and reduce the incidence of 
atherosclerosis. Alternatively, expression of soluble SRs can 
also block plaque initiation and progression. Inhibition of SR 

expression using a combined gene therapy and RNA inter-
ference strategy also holds promise for long-term therapy. 
RNAi-mediated treatment strategies of a single SR in mac-
rophage might provide new ways to protect arteries against 
atherogenesis  (75) . 

 Although this review focuses on the role of SRs in arthro-
sclerosis, thrombosis, and other vascular diseases, neverthe-
less, the role of SRs is not restricted to vascular lesions; these 
receptors are also implicated in a number of different cellular 
functions. 

 Phagocytosis is mostly mediated by SRs. Phagocytic cells 
express a broad range of receptors that participate in recogni-
tion and engulfment of apoptotic and senescent cells, includ-
ing CD36. CD36 recognizes pathogen-associated molecular 
patterns, including erythrocytes infected with  Plasmodium 
falciparum   (76) . Animal studies with mice, genetically engi-
neered to lack functional CD36, confi rm that this SR par-
ticipates in recognition and engulfment of apoptotic cells, 
senescence cells, or cell fragments  (77) . In addition to modi-
fi ed lipoprotein uptake, these proteins are now known to regu-
late apoptotic cell clearance, initiate signal transduction, and 
serve as a pattern recognition receptor for pathogens  (78) . 
Further studies in rodents and humans suggest that CD36 
fatty acid interactions may contribute to the pathogenesis of 
metabolic disorders, such as insulin resistance, obesity, and 
non-alcoholic hepatic steatosis  (79) . A number of links have 
been established between SR-BI and many cardinal features 
of human cardiovascular disease, including hypercholester-
olemia, atherosclerosis, occlusive fi brin-rich coronary artery 
lesions, ischemia, myocardial infarctions, and cardiac dys-
function  (80) . 

 Therefore, SR function is associated with both healthy and 
pathophysiological processes, such as homeostasis, apoptotic 
cell clearance, diabetic necropathy, age-induced cardiomyo-
pathy, antigen cross-presentation in Alzheimer ’ s disease, and 
different cardiovascular diseases.  
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  Highlights 

    SRs comprise a structurally diverse group of membrane-
bound proteins.  
  SR function is associated with both physiological and 
pathophysiological processes.  
  These receptors are highly implicated in the initiation and 
progression of atherosclerosis, thrombosis, and other cardio-
vascular diseases.  
  Inhibition of SR expression using a combined gene therapy 
and RNA interference strategy holds a promise for long-term 
therapy.       
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