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   Abstract 

 The epsins are a conserved family of endocytic adaptors 
essential for cell viability in yeast and for embryo devel-
opment in higher eukaryotes. Epsins function as adaptors 
by recognizing ubiquitinated cargo and as endocytic acces-
sory proteins by contributing to endocytic network stabil-
ity/regulation and membrane bending. Importantly, epsins 
play a critical role in signaling by contributing to epider-
mal growth factor receptor downregulation and the acti-
vation of notch and RhoGTPase pathways. In this review, 
we present an overview of the epsins and emphasize their 
functional importance as coordinators of endocytosis and 
signaling.  

   Keywords:    endocytosis;   epsin;   notch;   RhoGTPase; 
  signaling.     

  Introduction 

 Endocytosis is the process by which cells internalize portions 
of the plasma membrane to uptake nutrients and to control 
their membrane composition and surface area. In addition 
to cellular homeostasis, this fundamental cellular process is 
crucial for the regulation of multiple signaling pathways. It 
is well-known that endocytosis attenuates signals by inter-
nalizing activated ligand-receptor complexes from the cell 
surface. However, a growing body of evidence demonstrates 
that endocytosis also activates signaling, for example, by con-
tributing to the assembly of signaling endosomes from which 
new signaling events can be generated. This review dis-
cusses the epsin family of endocytic proteins and their role in 
coordinating endocytosis and signaling. For a more detailed 
chronological perspective and discussion of topics, such as 
epsin regulation, we refer the reader to an excellent review by 
Beverly Wendland  (1) .  

  The epsins 

  Brief overview of the epsin protein family 

 The epsins are a family of endocytic adaptor proteins con-
served across evolution with crucial physiological roles. 
Thus, while in metazoans epsins are required for proper 
embryo development  (2 – 5) , in yeast, they are essential for 
cell viability  (6 – 8) . The founding member of the family, 
rat epsin-1 (Eps15 interacting protein 1) was discovered by 
the DeCamilli lab (Yale University) as an interaction part-
ner of the endocytic accessory protein Eps15  (9) . Sequence 
analysis of epsin-1 revealed striking similarities with the 
mitotic phosphoprotein-90 from  Xenopus laevis   (10)  and 
two  Saccharomyces cerevisae  proteins later identifi ed as 
epsin homologs  (6) . Soon after, a second paralog, epsin-2 
was discovered  (11) . Both, epsin-1 and -2 were characterized 
as plasma membrane-localized components of the clathrin-
mediated endocytic machinery  (9, 11) . Although ubiqui-
tously expressed, epsin-1 and -2 were found to be enriched 
in the brain  (9, 11) . In contrast, a third epsin paralog, epsin-3, 
was subsequently shown to have a very restricted expression 
profi le that includes migrating keratinocytes  (12) , gastric 
parietal cells  (13) , and several carcinomas  (12 – 15) . 

  Saccharomyces cerevisiae  and most vertebrates (includ-
ing primates, rodents, and zebrafi sh) contain at least two 
epsin paralogs. In contrast, only one epsin gene is present in 
 Schizosaccharomyces pombe ,  Caenorhabditis elegans , and 
 Drosophila melanogaster . However, the single epsin gene in 
 D. melanogaster  produces two alternatively spliced forms  (3, 
16) . In addition to these classical plasma membrane-localized 
epsins, there is a ubiquitous family of epsin-like proteins that 
display partial sequence similarities but possess several dis-
tinctive features. Specifi cally, these epsin-related (epsinR) 
proteins (also known as enthoprotin, clint, or epsin-4) have 
a different set of protein and lipid interaction partners, local-
ize to the trans-golgi network/endosomes and participate in 
endosome to golgi transport  (17 – 21) . Therefore, a detailed 
description of this protein subfamily is beyond the scope of 
this review.  

  Domain organization of epsins 

 Domain organization of the epsins will be described from 
N- to C-terminus taking a generic mammalian epsin as a 
model (Figure  1  ). At the N-terminus, epsins bear a highly 
conserved, approximately 150 amino acid-long epsin 
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N-terminal homology (ENTH) domain  (22)  [reviewed in 
 (23) ]. The structure of the mammalian ENTH domain has 
been solved by X-ray crystallography as well as by NMR 
spectroscopy  (24 – 27) , and the emerging structural con-
sensus revealed a superhelical fold comprised of seven  α  
helices followed by an eighth helix misaligned with the 
superhelical axis. Structurally, the ENTH domain is most 
similar to the VHS domain characteristic of the Vps27, Hrs, 
and STAM traffi cking proteins, and it also contains  arma-
dillo  and HEAT repeat segments found in  β -catenin and 
karyopherin- β , respectively  (24) . The ENTH domain binds 
phosphatidylinositol 4,5-bisphosphate, a lipid enriched at 
different regions within the plasma membrane including 
endocytic sites  (25, 27, 28)  [reviewed in  (29) ]. Importantly, 
an elegant study from the McMahon lab demonstrated that 
this interaction triggers a dramatic conformational change 
that induces the formation of an additional N-terminal alpha-
helix, helix0 ( α 0)  (27) . Owing to its amphipathic nature,  α 0 
inserts into the cytoplasmic leafl et of the plasma membrane 
and promotes membrane curvature  (27, 28, 30 – 32) . This 
remarkable process is believed to be one of the initial steps 
of membrane invagination toward the formation of clathrin-
coated pits (CCPs) and eventually of clathrin-coated vesi-
cles [reviewed in  (33 – 36) ]. 

 Following the discovery of ubiquitin interacting motifs 
(UIM) in a subunit of the 26S proteasome  (37) , the consen-
sus UIM sequence was identifi ed in several proteins involved 
in receptor-mediated endocytosis, including epsin  (38) . 
Most epsins contain two or three UIM copies that interact 
with ubiquitinated cargo and are located C-terminal to the 
ENTH domain  (39 – 41)  [reviewed in  (1) ]. Importantly, coop-
erative binding of the UIMs is required for high avidity and 

 Figure 1    Schematic representation of a generic mammalian epsin. 
 Cartoon represents typical epsin domain organization, known inter-
action partners, and signaling links. PIP 2 , phosphatidylinositol-4,5-
bisphosphate; ENTH, epsin N-terminus homology domain;  α  0 , helix 
0; Ub, ubiquitin; U, ubiquitin-interacting motif; C, clathrin-binding 
motif; DPW (or DPF), AP2-binding aspartate-proline-tryptophan (or 
aspartate-proline-phenylalanine) motifs; NPF, asparagine-proline-
phenylalanine motif that binds to EH domain-containing proteins, 
such as Eps15 and intersectin; EH, Eps15 homology domain; AP2, 
clathrin assembly or adaptor protein 2. Figure is not drawn to scale; 
not all possible interactions are depicted.    

ubiquitin-dependent recruitment of the yeast epsins to biolog-
ical membranes  (41) . Furthermore, it has been proposed that 
multiple monoubiquitination or limited polyubiquitination 
(up to approximately four ubiquitin units) of cargo is essential 
for achieving suffi cient interaction avidity for epsin recruit-
ment  (42 – 45)  [reviewed in  (46) ]. 

The region between the UIMs and the very C-terminus of 
epsin is mostly unstructured  (47)  and displays high interspe-
cies sequence divergence. However, this region also includes 
several conserved short signature motifs for binding vari-
ous components of the endocytic machinery (corresponding 
to 5 – 13 %  of this region ’ s sequence). Specifi cally, mam-
malian epsins possess two clathrin-binding motifs (CBM) 
that closely follow the consensus L ø Z ø Z motif (where L is 
leucine,  ø  and Z are amino acids with bulky hydrophobic 
and polar side chains, respectively) and bind to the termi-
nal domain of clathrin heavy chain  (48, 49)  [reviewed in 
 (50) ]. These clathrin-binding sequences fl ank a cluster of 
three to eight DP[W/F] (aspartate-proline-tryptophan/phe-
nylalanine) repeats that bind to the adaptor complex AP2  (9, 
51 – 54) . In fact, the resulting avidity of these AP2-binding 
motifs is so high that overexpression of an epsin-1 fragment 
containing its DP[W/F] motifs leads to severe impairment 
of AP2-mediated internalization by a dominant-negative 
mechanism  (9) .

 C-terminal to the CBM-DPW cassette, two or three NPF 
(asparagine-proline-phenylalanine) tripeptide repeats are 
found. These motifs are recognized by the eps15-homology 
(EH) domain of proteins like eps15, intersectin, and POB1 
 (9, 55, 56) . 

 This general architecture (Figure 1) is mostly preserved 
in higher eukaryotes with minor variations in the number of 
some binding motifs. In contrast, yeast epsins display sig-
nifi cant differences. For example, the AP2-binding DP[W/F] 
motifs are absent, and a single clathrin-binding domain is 
present at their very C-terminus  (6)  (see Figure 2). Other 
deviations from this general architecture are present in the 
epsin ortholog of  Dictyostelium discoideum . This epsin lacks 
UIMs but interacts with clathrin and AP2 at the plasma mem-
brane  (57)  (Figure  2  ). In  Trypanosoma bruceii , the single 
ENTH domain-containing protein, TbEpsinR, displays fea-
tures common to both epsin and epsinR. Similar to epsinR, 
TbEpsinR lacks UIMs, and a fraction is partially localized 
at endosomal membranes; however, unlike epsinR, a second 
population contributes to clathrin-dependent endocytosis at 
the plasma membrane  (58) .   

  Epsin and endocytosis 

 Epsins are proteins capable of fulfi lling different roles at 
nascent endocytic sites. On one hand, as these proteins bear 
UIMs, they act as endocytic adaptors by directly binding to 
ubiquitinated cargo. On the other hand, epsins also interact 
with other elements of the endocytic machinery including 
the hubs of the endocytic network, i.e., AP2 and clathrin. 
Therefore, epsins function as an accessory protein by consoli-
dating and regulating the endocytic network. 
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  Epsin-specifi c cargoes 

 Although yeast epsins are known to participate in the internal-
ization of several membrane proteins, such as the alpha-factor 
receptor Ste2  (40, 59) , they are not essential for their endo-
cytosis, i.e., to date, no physiological cargo has been found 
to be epsin specifi c. In higher eukaryotes, epsin is required 
for endocytosis of notch ligands  (4, 60 – 62) , and a body of 
evidence strongly implicates this adaptor in epidermal growth 
factor receptor  (63 – 66)  and epithelial sodium channel  (67 –
 69)  internalization. 

  Notch ligands     The notch signaling pathway is a conserved 
signaling module involved in cell fate determination 
[reviewed in  (70) ]. While genetic evidence obtained in 
 D.   melanogaster  suggests that endocytosis is required in both 
signal-sending and -receiving cells for notch activation  (71) , 
other studies indicated that  Drosophila  epsin, liquid facets 
(Lqf) is only required in the signal-sending cell  (60, 61) . These 
observations imply that epsin contributes to notch activation 
by regulating/facilitating the endocytosis of the notch 
ligands delta/serrate/lag2 (DSL)  (4, 60 – 62) . Introduction of a 
tyrosine-based internalization signal (from the LDL receptor) 
in the cytoplasmic domain of delta (Dl) could bypass the need 
for epsin in notch signaling  (61) , supporting the notion that 
the endocytic adaptor function of epsin is critical for this 
pathway activation. Moreover, the endocytosis and signaling 
of Dl was found to be epsin specifi c, as disruption of AP2 
had no signifi cant impact  (72) . Dl and serrate accumulate 
at the plasma membrane in cells defi cient in mindbomb or 
neuralized, suggesting that these E3 ligases ubiquitinate DSL 
ligands for epsin-mediated internalization  (61, 62, 73 – 77) . 
Although the exact mechanism by which epsin-mediated 
endocytosis triggers notch activation is not fully understood, 
it is clear that it requires ubiquitination, epsin binding, and 
internalization of notch ligands. Details on the signaling 
relevance of epsins for this pathway are described in the 
section on  ‘ Epsin controls notch signaling activation via 
endocytosis ’ .  

  Epidermal growth factor receptor (EGFR)     This 
receptor tyrosine kinase belongs to the erythroblastic 
leukemia viral oncogene homolog (ErbB) family consisting 
of four closely related members: ErbB1 (EGFR), ErbB2, 
ErbB3, and ErbB4 (also designated as HER1-4 for human 
epidermal growth factor receptor). This protein family, 
particularly ErbB1, has been the focus of extensive research 
due to its role in cancer. Indeed, EGFR expression is frequently 
upregulated in many solid tumors where it promotes cancer 
progression [recently reviewed in  (78) ], thus making the 
use of EGFR inhibitors a powerful therapeutic approach. 
Importantly, defi cient internalization of EGFR also leads to 
receptor hypersignaling and, in consequence, to malignant 
transformation  (79, 80)  [reviewed in  (81) ]. Therefore, the 
study of EGFR endocytosis has captured considerable 
interest. Classically, binding of ligands to the extracellular 
domain of their receptors not only induces downstream 
signal transduction but also promotes receptor endocytosis 
[reviewed in  (82, 83) ]. The ubiquitin-ligase Cbl is believed 
to initiate the internalization of EGFR  (63)  by promoting 
mono, multi-, and polyubiquitination  (63, 66, 84) . However, 
whether ubiquitination is necessary and suffi cient for 
internalization still remains to be fully established [reviewed 
in  (85) ]. 

 Although there is some result variability, likely associated 
with knock-down effi ciency and diversity of cell lines used, 
it is broadly accepted that internalization of ubiquitinated-
EGFR is dependent on epsin and requires the integrity of its 
UIMs  (43, 64 – 66) . Whether this process is clathrin depen-
dent or not has been a topic of debate. On one hand, it has 
been proposed that upon exposure to high (but still physio-
logical) concentrations of ligand, EGFR undergoes extensive 
ubiquitination  (64) . Under these conditions, in addition to 
the classical clathrin-dependent internalization mechanism, a 
clathrin-independent, caveolae-, Eps15-, and epsin-dependent 
internalization route has been reported to occur for EGFR 
endocytosis  (64) . Interestingly, another report indicated 
that epsin binding to ubiquitin negatively affected its inter-
action with clathrin  (86) . Further, it was proposed that the 

 Figure 2    Comparison of domain architecture of epsins from different organisms. 
  Hs, Homo sapiens  (NP_037465.2);  Sc, S. cerevisiae  (NP_010120);  Dm, D. melanogaster  (AAF05113);  Ce, C. elegans  (NP_510459);  Dd, 
D. discoideum  (XP_635269).    
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clathrin-independent pathway of EGFR internalization 
leads to degradation of cargo (i.e., to signaling termina-
tion), whereas the clathrin-dependent route promotes per-
sistent signaling as well as recycling of EGFR  (64, 87) . In 
contrast, other studies have indicated that epsins are able to 
interact with both clathrin and ubiquitin simultaneously  (43, 
63, 65, 66)  and that EGFR does not signifi cantly colocalize 
with caveolar structures  (88) . These seemingly contradic-
tory results likely suggest that EGFR endocytosis is a more 
complex process than anticipated. In fact, other posttrans-
lational modifi cations besides ubiquitination have recently 
been found to contribute to EGFR uptake  (84) , raising the 
possibility of multiple endocytic routes and additional adap-
tors besides epsin (yet to be identifi ed) being involved in the 
process.  

  Epithelial sodium (Na) channel (ENaC)     This amiloride-
sensitive sodium channel is primarily found in polarized 
epithelia in lung, kidney, colon, sweat ducts, and salivary 
glands. ENaC is a heteromer composed of two alpha, one beta, 
and one gamma subunit. This channel functions to maintain 
electrolyte balance and fl uid movement across the epithelia 
[reviewed in  (89) ]. It is known that the ubiquitin-ligase neural 
precursor cell expressed, developmentally downregulated 
protein 4-2 (Nedd4-2) ubiquitinates and promotes ENaC 
internalization  (90 – 93) . In Liddle ’ s syndrome where ENaC 
recognition by Nedd4-2 is affected, the channel activity is 
increased resulting in hypertension  (94, 95) . 

 ENaC was found in clathrin-coated vesicles along with 
epsin, and these proteins effi ciently co-immunoprecipi-
tated together in an epsin UIM-dependent manner  (68) . 
Furthermore, coexpression of ENaC with Nedd4-2 or epsin 
decreased ENaC-dependent currents, in contrast to a domi-
nant-negative dynamin mutant, which increased such currents 
 (67) . This evidence implicates epsin in the downregula-
tion of this sodium channel. Interestingly, the same authors 
reported that epsin was not implicated in the endocytosis of 
the K +  channel  (68) , renal outer medullary potassium chan-
nel (ROMK), even when it is also known to be subjected to 
ubiquitination  (96) . 

 In addition to the abovementioned cargoes, endocyto-
sis of a number of other proteins seems to be dependent 
on epsins. For example, epsins play a role in the uptake of 
infl uenza virus bound to its receptor in mammalian cells 
 (97) . Epsin is also important for the clathrin-mediated inter-
nalization of the antigen-presenting MHC class I molecules 
following ubiquitination by a Kaposi ’ s sarcoma-associated 
herpesvirus ubiquitin ligase  (45, 98) . Furthermore, epsin is 
involved in the internalization of insulin receptor  (42) , and 
a large-scale RNA interference study revealed that epsin 
contributes to the internalization of dopamine transporter 
in neurons  (99) . Additionally, epsin was shown to medi-
ate the internalization of ubiquitinated G protein-coupled 
receptor protease activated receptor 1 (PAR1)  (100) . The 
 Drosophila  epsin homolog Lqf was reported to be required 
for the receptor-mediated endocytosis of  Drosophila  larval 
serum proteins into larval fat body cells from the hemo-
lymph  (101) .   

  Epsin as an accessory protein 

 Besides its role in the internalization of ubiquitinated cargo, 
epsins are believed to participate in the stabilization of the 
endocytic network. An interesting study from the Schmid lab-
oratory (Scripps Institute) demonstrated that CCPs undergo 
maturation into functional clathrin-coated vesicles only if 
they successfully pass through an  ‘ endocytic checkpoint ’  
 (102) . The checkpoint verifi es, via protein-protein interac-
tions, a critical mass of cargo, endocytic components, and 
other factors  (102) . Failure to reach this critical mass leads 
to destabilization of the immature CCPs, which subsequently 
abort  (102) . This observation is in agreement with a previ-
ous study that demonstrated that stochastically initiated CCPs 
undergo rapid collapse if conditions for stabilization are not 
met  (103) . Epsin-1, along with CALM and SNX9, contrib-
utes to this endocytic checkpoint, and even a partial depletion 
of epsin-1 (by 40 % ) leads to an increase in the proportion 
of abortive CCPs  (104) . Epsins in yeast are also recruited 
during the early stages of clathrin coat formation  (105)  and 
participate in the assembly of clathrin-coated areas  (106) . 
Furthermore, the yeast epsins play a similar role in expand-
ing and sustaining the endocytic network via protein-protein 
interactions mediated by their UIM and NPF motifs  (59, 107) . 
In addition, epsins might be involved in other regulatory 
mechanisms affecting the endocytic network, for example, in 
 Dictyostelium , epsin has been implicated in facilitating phos-
phorylation of the actin-binding adaptor protein huntingtin-
interacting protein 1 related (Hip1r)  (108, 109) .   

  Epsin and signaling 

 The process of endocytosis plays a dual role in signaling 
regulation. It not only desensitizes cells by downregulating 
activated receptors (e.g., EGFR) but is also required for the 
activation of other signaling pathways (e.g., via internaliza-
tion of notch ligands). Importantly, epsins are functional in 
both the modes of signaling regulation. The role of epsins in 
signal termination is directly linked to their ability to sup-
port endocytosis of receptors (as described in the  ‘ Epsin and 
endocytosis ’  section) targeted for lysosomal degradation. The 
function of epsins in signaling activation has been linked to 
the notch developmental pathway and RhoGTPase signaling. 

  Epsin controls notch signaling activation via 

endocytosis 

 Endocytosis is critical for the activation of the notch signal-
ing pathway. It has been established that Lqf is essential for 
proper signaling by the DSL ligands  (60, 61) .  lqf  - clones 
showed no overall disruption of global endocytosis, but Dl 
was unable to signal to receiving cells  (61) . In agreement, 
epsins ’  relevance for embryogenesis and development has 
been clearly demonstrated: Lqf null mutation is embry-
onic lethal  (2) , and fl ies overexpressing epsin or expressing 
mutant epsin alleles display severe eye, wing, and leg mor-
phology defects  (3, 110) . Similarly, epsin mutations, in both 
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 D. melanogaster  and  C. elegans , led to defects in germline 
and heart development due to defi ciencies in notch signaling 
 (4) . A detailed study on the phenotypes of double epsin-1/-2 
knockout (KO) mice revealed that embryos did not survive 
beyond E10.5, while single epsin KO pups were healthy  (5) . 
However, embryonic fi broblasts taken from double epsin KO 
embryos did not show abnormalities in general clathrin-me-
diated endocytosis. The major cause for the lethality of the 
embryos was the disruption of the extraembryonic structures, 
defects in cardiovascular development, somitogenesis, and 
neural tube differentiation of the embryo  (5) . Interestingly, 
these phenotypes are highly comparable to those produced by 
impairment of the notch pathway. These studies suggest that 
although epsin is dispensable for general endocytosis, it may 
be critical for cargo-specifi c signaling functions.  

  Epsin contributes to RhoGTPase signaling activation 

 Cdc42 is a highly conserved member of the RhoGTPase fam-
ily that acts as the master regulator of cell polarity [reviewed 
in  (111) ]. This signaling protein was fi rst identifi ed in yeast 
through mutants that led to a cell division arrest and loss of 
actin cytoskeleton polarization  (112) . Indeed, Cdc42 regu-
lates the actin and microtubule cytoskeletons [reviewed in 
 (111) ] and modulates membrane traffi cking [reviewed in 
 (113) ] among other functions. Complementary to their endo-
cytic role, epsins are involved in the regulation of this key 
cell polarity protein  (8) . Mechanistically, the epsin ’ s ENTH 
domain interacts with and sequesters/inhibits yeast Cdc42 
GTPase-activating proteins (Cdc42 GAPs)  (8) . This interac-
tion has been proposed to relieve the GAP-induced Cdc42 
inhibition and thereby to promote Cdc42 signaling activation. 
Interestingly, this function is analogous to the one described 
for the epsin-interacting protein intersectin that sequesters/
inhibits a Cdc42 GAP, CdGAP  (114) , and displays GEF activ-
ity toward Cdc42  (115) . 

 In yeast, the ENTH domain is necessary and suffi cient to 
sustain cell viability upon epsin deletion  (6, 8) . Furthermore, 
the specifi c residues required for this essential function 
of the ENTH domain were also identifi ed. As expected, 
ENTH domain mutations in these residues (ENTH Y100R  and 
ENTH T104D ) led to defects in Cdc42 activation, reduced viabil-
ity, and actin cytoskeleton depolarization  (8) . In agreement, 
in  Dictyostelium discoideum , T107, the residue analogous to 
the yeast T104, was essential for normal actin dynamics at 
the membrane  (109)  as well as for the development of nor-
mal spore morphology  (57) . Interestingly, yeast epsin Ent2 has 
also been found to have physical and genetic interactions with 
the only  S. cerevisiae  Cdc42 GEF  (116, 117) . In addition, the 
ENTH domain of Ent2 bears an additional activity in cell divi-
sion signaling pathways  (118)  that is dependent on its ability 
to interact strongly with one of the yeast Cdc42 GAPs: bud 
emergence 3 (Bem3). Bem3 is also one of the key players in 
the assembly of the septin cytoskeleton, a family of scaffolding 
proteins essential for proper cell division  (119, 120) . In fact, 
overexpression of the ENTH domain of Ent2, but not of Ent1, 
induces severe abnormalities in septin organization  (118) . 

 Taken together, this evidence indicates that the endocytic 
protein epsin is involved in Cdc42 regulation, probably coor-
dinating the processes of establishment of cell polarity and 
endocytosis in time and space. 

 Importantly, epsin involvement in Rho GTPase signaling 
function is conserved in mammals. Specifi cally, epsins via 
their ENTH domain were found to interact with the Cdc42/
Rac1 GAP and Ral effector, Ral-binding protein 1 (RalBP1) 
 (121) . Indeed, siRNA-mediated knockdown of epsins led to 
Rac1 activation defi ciencies  (121) . Importantly, this interac-
tion was shown to be essential for another polarity-dependent 
process: cell migration. Interestingly, epsins are enriched in 
the leading edge of migratory cells  (121, 122) , and epsin-3 
is selectively expressed in migratory keratinocytes  (12) . 
Further, overexpresssion of epsins enhanced cell migration 
and invasion, with epsin-3 being the most potent paralog for 
induction of this behavior  (121) . Interestingly, upregulation 
of epsins has been reported in skin, breast, and lung cancers 
 (12 – 14, 123) . In addition, our lab also identifi ed epsin-3 
expression in mouse pancreatic cancer models and in human 
pancreatic cancer cell lines, such as BxPC-3 and Panc-1  (15, 
121) . Furthermore, overexpression of epsin-2 and -3 in Madin 
Darby canine kidney cells induced morphological changes 
characterized by extended lamellipodia that prompted the 
epsin-transfected cells to migrate out of epithelial colonies 
 (15) . Therefore, it is tempting to speculate that epsin upregu-
lation can contribute to enhance cancer cell invasion in vivo 
by RhoGTPase (Rac1) and notch signaling hyperactivation, 
and it constitutes an interesting possibility to be investigated.   

  Nonclassical functions of epsins 

 Apart from its role in endocytosis and signaling, epsin seem 
to be important for autophagy in  Drosophila , as larvae lack-
ing Lqf are unable to form autophagosomes  (101) . Further, 
epsin has been reported to accumulate in the nucleus follow-
ing inhibition of nuclear export and to be involved in regu-
lation of transcription  (24, 124) . Additionally, the ability of 
epsin to induce membrane curvature is important for proper 
mitotic membrane organization  (125) . Interaction of epsin 
with microtubules has also been reported  (126) .  

  Perspectives 

 Epsin is a multifaceted protein that apart from its classical 
role in cargo recognition and endocytic network stabiliza-
tion, plays a crucial role in signaling. Epsin is required for 
the activation of the notch pathway, and it affects RhoGTPase 
signaling. Therefore, we propose that epsins are proteins that 
coordinate endocytosis and signaling in time and space. 

 This coordination between endocytosis and signaling is 
of utmost importance because effi cient functioning of one 
requires precise regulation by the other. For example, work 
in yeast has demonstrated that the polarized distribution of 
signaling molecules, such as Cdc42 regulates membrane 
traffi cking, which in turn reinforces polarization  (127, 128)  



122  A. Sen et al.

[recently reviewed in  (129) ]. The establishment and mainte-
nance of such polarized regions is crucial for eukaryotic cel-
lular organization and impacts central functions, such as cell 
viability, cell fate specifi cation, and cellular migration. 

 Thus, it is not surprising that epsin is required for cell via-
bility (yeast), proper embryo development (fl ies and mice), as 
well as establishment of cell polarity and functions associated 
with it (e.g., cytokinesis, cell migration, and invasion). Unlike 
other endocytic proteins [reviewed in  (130) ], the epsins (par-
ticularly epsin-3) are found to be upregulated in cancer cells. 
Although a direct link to carcinogenesis remains to be estab-
lished, the role of epsins in promoting cancer invasion is a 
promising direction to be explored. 
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