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   Abstract 

 Molecular chaperones are key components in the maintenance 
of cellular homeostasis and survival, not only during stress 
but also under optimal growth conditions. Among the ATP-
dependent chaperones, heat shock proteins (Hsp90) proteins 
play a special role. While Hsp90s can interact with unfolded 
and misfolded proteins, their main (and in eukaryotic cells 
essential) function appears to involve interactions with a lim-
ited number of protein clients at late steps of maturation or in 
 ‘ alter-native ’  conformations for regulating their stability and 
activity. Because Hsp90 clients are hubs of diverse signal-
ing networks and participate in nearly every cellular func-
tion, Hsp90s interconnect many regulatory circuits and link 
them to environmental impacts. The availability and activ-
ity of Hsp90 may thus infl uence complex physiological and 
pathophysiological processes, such as differentiation, devel-
opment, aging, cancer, neurodegeneration, and infectious 
diseases. Furthermore, through homeostatic effects on differ-
entiation and development, Hsp90s act as capacitors of phe-
notypic evolution. In this review, we discuss recent insights 
in the structure and chaperone cycle of Hsp90s, the mecha-
nisms underlying Hsp90 binding to clients, and potential rea-
sons why client proteins specifi cally require the assistance of 
Hsp90s. Moreover, the current views on Hsp90-cochaperone 
interactions and regulation of Hsp90 proteins via posttransla-
tional modifi cations are summarized. The second half of this 
article is devoted to the role of Hsp90 proteins in health and 
disease, aging, and evolution.  

   Keywords:    aging;   chaperones;   evolution;   protein folding; 
  regulation by cochaperones;   regulation by posttranslational 
modifi cations.     

  Introduction 

 The 90-kDa heat shock proteins (Hsp90s) are highly con-
served, ubiquitously expressed in eukaryotic cells, and belong 
to the most abundant proteins in the cytosol. In eukaryotes, 
Hsp90s are essential for housekeeping functions and induced 

under various stress conditions, whereas in many prokary-
otes, Hsp90s appear to be dispensable for most growth condi-
tions. Hsp90s are homodimeric ATPases  (1)  and the ATPase 
activity of Hsp90s is essential in vivo  (2, 3) . The function 
of Hsp90s, in contrast to other chaperones, has remained an 
enigma for several decades. While the other ATP-dependent 
chaperones were shown to refold denatured model proteins 
in vitro (Hsp60 and Hsp70), or unfold proteins (Hsp100), no 
such activities could be found for Hsp90s  (4, 5) . Furthermore, 
Hsp90s do not appear to make an important contribution to 
de novo folding of proteins, another pivotal task of molecular 
chaperones  (6) . The observation that Hsp90s form complexes 
with certain nuclear receptors and protein kinases fi nally led 
to the hypothesis that these proteins act as activity regulators 
of a limited number of protein substrates, designated as  ‘ cli-
ents. ’  To date, almost 300  bona fi de  Hsp90 clients have been 
identifi ed. Among these, two dominant groups have been 
distinguished, specifi cally, transcription factors and kinases, 
most of which participate in signal transduction pathways of 
cell growth and differentiation. The  ‘ other ’  clients form a very 
diverse group and include DNA- and RNA-binding proteins 
(including polymerases), ribosomal proteins, small GTPases, 
cytoskeletal proteins, and ion channels. Many viruses hijack 
Hsp90s for maturation of their proteins. Overall, Hsp90 cli-
ents are not related with regard to sequence or structure, and 
the mechanisms by which Hsp90s bind to these proteins and 
regulate their activity, turnover, traffi cking, cofactor insertion, 
membrane insertion, ligand binding, or covalent modifi ca-
tion are yet to be established. In eukaryotic cells, the ATPase 
cycle of Hsp90 is intimately coupled to the Hsp70 chaper-
one machine. Both systems rely on a large number of specifi c 
cochaperones, which enter and leave the machine in a defi ned 
order, thus regulating client maturation. The main aim of this 
article is to provide an overview of the intricacy of Hsp90 
machinery and complexity of cytosolic Hsp90 function.  

  Structure and ATPase cycle of Hsp90 

 Hsp90 consists of an N-terminal nucleotide-binding domain 
(ND), a middle domain (MD) and a C-terminal dimerization 
domain (DD) (Figure  1  ). Both ND and MD are involved in ATP 
hydrolysis. All three domains interact with different cochaper-
ones and substrates, although the middle domain appears to 
play a central role in these interactions (Figure  2  ). Based on the 
structure of ND, Hsp90 is classifi ed as a member of a super-
family containing DNA mismatch repair protein MutL, DNA 
Gyrase B, and histidine kinases  (1) . The ND is also the binding 
site of the specifi c inhibitors, geldanamycin and radicicol  (7) . 
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The Hsp90 dimer displays a large degree of conformational 
freedom, as evident from crystal structures, electron micros-
copy (EM) and small angle X-ray scattering (SAXS) data for 
different homologs  (8 – 11)  (Figure 1B). The subdomains show 
signifi cant differences in their relative orientations, and the 
protomers perform wide shearing and twisting motions around 
the DD, ranging from wide open to very compact closed states 
with dimerized NDs. Furthermore, Hsp90 appears to fl uctuate 
continuously between two open and two closed conformations 
in the apo, ATP- and ADP-bound states, as shown for the yeast 
homolog, Hsp82  (12) . Nucleotide binding changes the relative 

abundance of the different conformations by altering the for-
ward and back transition rates. The distribution of conforma-
tions also varies between species  (13) , explaining the different 
ATPase rates, since only the closed, N-terminally dimerized 
conformation can hydrolyze ATP. The C-terminal DD opens 
and closes as well with rapid kinetics and in reciprocal cor-
relation to ND  (14) . The crystal structure of Hsp82 in the 
presence of  β , γ -imidoadenosine 5 ′ -triphosphate (AMPPNP) 
and the cochaperone, Sba1, represents a closed conforma-
tion with dimerization of NDs and close contacts between 
ND and MD. In this conformation, the fi rst  β -strand (residues 

 Figure 1    The Hsp90 domain organization, structures, and chaperone cycle. 
 (A) Domain organization of Hsp90. ND, nucleotide-binding domain; MD, middle domain; DD, C-terminal dimerization domain; CL, charged 
linker connecting ND and MD. Numbers indicate the domain boundaries in human Hsp90 β . (B) Secondary structure representations of crys-
tal structures of full-length Hsp90 proteins. HtpG-apo, dimeric model of  Escherichia coli  Hsp90 crystallized in the absence of nucleotides; 
HtpG-ADP, dimer of  E. coli  Hsp90 crystallized in the presence of ADP as an intercalating dimer of dimers; Hsp82-AMPPNP, structure of 
 Saccharomyces cerevisiae  Hsp90 crystallized in the presence of the cochaperone Sba1 (not shown) and AMPPNP; Grp94-AMPPNP, crystal 
structure of the  Canis familaris  endoplasmic reticulum Hsp90 in the presence of AMPPNP. The Protein Data Bank (PDB) entry codes are given 
below the structures. ND, blue/purple; MD, green; DD, red. The resolved N-terminal part of the structures, corresponding to fi ve residues, 
are shown in yellow and orange to indicate the position of the N-termini. (C) Hsp90 chaperone cycle. Clients (C) initially interact with Hsp70 
 (70)  mediated by J-domain cochaperones (Hsp40), which facilitate client binding by stimulating Hsp70 ATPase activity. The Hop/Sti1 scaffold 
cochaperone assembles the Hsp70-Hsp90-client complex. Hop/Sti1 is displaced by peptidyl-prolyl-cis/trans-isomerases (e.g., Cpr6, Cyp40, 
FKBP52) and p23/Sba1, which is coupled to ATP binding to Hsp90. Hsp70 release requires ADP dissociation and ATP binding probably cata-
lyzed by nucleotide exchange factors (e.g., Bag1, HspBP1, Hsp110). Aha1-stimulated ATP hydrolysis by Hsp90 induces client release. The cli-
ent may subsequently rebind Hsp70. Clients exit the chaperone cycle via ligand binding or posttranslational modifi cations (yellow triangle).    
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1 – 8 in Hsp82) of one protomer crosses over to the ND of the 
second protomer completing a  β -sheet, a lid structure closes 
over the nucleotide-binding pocket, and the catalytic loop 
of the MD contacts the nucleotide-binding pocket to initiate 
ATP hydrolysis. Multiple mutual contacts between ND and 
MD regions of both protomers account for the cooperativity 
of ATP hydrolysis  (15 – 17) . Similarly, for the  Escherichia coli  
homolog, HtpG, the most compact conformation prevails in 
the ATP-induced state  (10, 18, 19) , although confl icting data 
have also been reported  (13) . Graf and coworkers showed that 
ATP binding induces slow stepwise conformational changes in 
the secondary structure, which start at the nucleotide-binding 
pocket, proceed with dimerization of NDs, and fi nally lead to 
the docking of ND and MD. In their study, addition of ADP 
did not afford as high a degree of protection as ATP, indicat-
ing that for HtpG, conformational changes are coupled more 
strongly to ATP binding and hydrolysis, in contrast to Hsp82. 
Prokaryotic and eukaryotic Hsp90s show several structural 
differences, indicative of mechanistic differences. In eukary-
otes, Hsp90s possess a charged fl exible linker between the 
ND and MD. Hainzl and coworkers showed that the linker 
is largely dispensable for ATPase activity, but necessary for 
cochaperone regulation and client activation. The linker may 

provide additional freedom for the relative orientations of the 
N and M domains, which could be required for the mechanism 
of regulation through cochaperones, and also create a fl exible 
interface for client interactions  (20) . Furthermore, eukaryotic 
Hsp90s have a conserved glutamate-glutamate-valine-aspar-
tate (EEVD) motif at the C-terminus. This sequence is part 
of a binding site for cochaperones containing tetratricopeptide 
repeat (TPR) domains. As only two substrates and no cochap-
erones are known for HtpG, it is possible that these motifs 
(among other characteristics) evolved in eukaryotes to create 
a fl exible system able to meet the requirements of a growing 
protein clientele.  

  Interactions of Hsp90 with clients 

 The fi rst clients of Hsp90 identifi ed were nuclear steroid 
hormone receptors (SHRs) and oncogenic kinases  (21 – 23) . 
Association with Hsp90 and Hsp70 was shown to be neces-
sary for hormone binding of glucocorticoid receptor (GR) and 
progesterone receptor  (24, 25)  and for kinase activity  (26) . 
The function of Hsp90 is specifi cally inhibited by ansamycin 
antibiotics, such as geldanamycin. The drug competitively 

 Figure 2    Interaction of cochaperones with Hsp90. 
 (A) Primary interaction area for selected cochaperones on a schematic illustration of Hsp90. (B) Cartoon representation of the crystal structure 
of yeast Hsp82 (PDB entry code 2CG9) with cochaperone-interacting residues shown as spheres. Coloring: Aha1 interacting residues, red, 
orange, and purple  (44, 62) ; Sba1/p23 interacting residues, yellow, orange, and green  (8) ; Sgt1 interacting residues, cyan and green  (204) ; 
Cdc37 interacting residues, blue, purple, and pink  (205) . Since some of the structures only contained isolated domains of Hsp90, additional 
interaction sites in other domains are possible.    
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inhibits ATP binding to Hsp90 and leads to the dissociation 
of nearly all clients, generally resulting in their inactivation 
and degradation  (27) . This tool provides a rapid and effec-
tive means to identify Hsp90 client proteins. A growing list 
of these proteins is maintained by Didier Picard ( http://www.
picard.ch/downloads/Hsp90interactors.pdf ). 

  Which client properties are recognized by Hsp90 ?  

 In vitro, Hsp90s bind hydrophobic peptides and prevent the 
aggregation of several denatured model substrates  (5, 28, 29) , 
maintaining these substrates in a state that can be refolded 
by the Hsp70 system  (4) . These fi ndings indicate that Hsp90 
can recognize misfolded or partially unfolded polypeptides. 
This so-called holdase activity of Hsp90 is nucleotide-
independent, and its relevance in vivo is not clear, as yeast 
shows no increase in the level of aggregated proteins follow-
ing heat shock treatment when Hsp90 function is compromised 
 (6) . Furthermore, as the ATPase activity of Hsp90 is essential 
in vivo, nucleotide-independent interactions with clients do 
not constitute the indispensible functions of Hsp90  (2, 3) . 

 ATP-dependent prevention of aggregation activity of 
Hsp90 also exists, as has been demonstrated with A β  as the 
substrate  (30) . However, it is not clear whether monomers 
or small oligomers of A β  are bound by Hsp90. In another 
study, Zhao and colleagues provided evidence that Hsp90 
autonomously resolves small aggregates of Pih1 in an ATP-
dependent manner in vitro  (31) . Albeit, the issue of whether 
aggregated Pih1 is in an unfolded conformation remains to 
be established. In these cases, exposed hydrophobic motifs 
cannot be the only determinant of binding, since Hsp90 exerts 
this ATP-dependent activity on a limited number of proteins. 

 On the other hand, Buchner and coworkers  (32)  demonstrated 
that luciferase can be in an active conformation when bound 
to Hsp90. However, binding required initial interactions of 
denatured luciferase with Hsp70 and Hsp40, and cochaperone-
mediated transfer of refolded luciferase to Hsp90. In contrast, 
checkpoint kinase (Chk) 1 is chaperoned posttranslationally 
by Hsp70 and Hsp90, with no induced unfolding step  (33) . 
Yet, the chaperoning reaction was performed with immobi-
lized Chk1, and spontaneous unfolding cannot be excluded. 
Similarly, GR and progesterone receptors are immunoad-
sorbed and washed with high salt before conversion into a hor-
mone-binding-competent conformation by Hsp70 and Hsp90 
 (24, 34) . To our knowledge, reconstitution of this process 
free in solution has not been achieved, suggesting a largely 
unfolded and aggregation-prone conformation of client pro-
teins. Interactions of p53 with Hsp90 have also been observed 
under conditions where p53 exhibits a mostly unstructured 
conformation  (35) . These data suggest that Hsp90 has various 
modes of interaction with clients. On the one hand, Hsp90 
preferentially interacts with at least partially unfolded poly-
peptides, and on the other, the folding process in vivo may 
require complex and varying interaction motifs composed of 
fl exible and folded protein parts. 

 The complexity and specifi city of recognition motifs 
has been extensively characterized for kinases  (26, 36) . 
Dependency on Hsp90 is substantially altered with single 

amino acid substitutions, often in correlation with an increase 
in intrinsic instability. The best known examples are proto-
oncogenic kinases and their mutated counterparts  (26, 37 – 41) . 
Interactions of the same kinase at different stages of matura-
tion can be governed by different determinants, as demon-
strated for the receptor tyrosine kinases ErbB1 and ErbB2 of 
the epidermal growth factor receptor (EGFR) family  (42) . An 
extensive study of 105 kinases provided evidence that inter-
actions with Hsp90 are determined by surface electrostatics, 
rather than contiguous sequence motifs  (43) . However, so far, 
no common determinants of binding have been discovered 
that discriminate client from non-client kinases. 

 For most client proteins investigated to date, interactions 
with Hsp90 require Hsp70 and a host of cochaperones, indi-
cating that Hsp90 exerts its essential effects only in the con-
text of a complex chaperone machinery. The issue of why 
Hsp90 needs the assistance of Hsp70 for client binding is still 
an enigma. It is likely that the key to this question lies in the 
ability of Hsp70 to interact with linear hydrophobic motifs 
and refold denatured proteins to their native state. Hsp70, in 
cooperation with its J-domain cochaperone (Hsp40), is con-
siderably more effi cient in preventing aggregation of dena-
tured proteins and converts the client into a conformation that 
presents the complex surface pattern recognized by Hsp90.  

  How does Hsp90 bind clients ?  

 Since interactions of Hsp90 with clients are mostly transient 
and require multiple factors, no high-resolution structures 
are currently available for Hsp90-client complexes. Original 
models proposed that clients are bound in a clamp-like fash-
ion between the Hsp90 protomers at a 1:2 stoichiometry  (44, 
45) . However, in the crystal structure of yeast Hsp82 com-
plexed with AMPPNP and the cochaperone, Sba1, there is 
not enough space between the protomers to accommodate the 
folded client protein. 

 This dilemma was solved by Vaughan and coworkers, who 
managed to purify a complex of Hsp90 with the cell cycle 
dependent kinase Cdk4 and the cochaperone Cdc37 from Sf9 
cells and achieved the fi rst low-resolution structure of this com-
plex by negative-stain EM and single-particle analysis  (46) . 
Albeit conclusive evidence is still lacking that the observed 
complex is a functional intermediate of the Hsp90-client acti-
vation cycle. Cdk4 was bound in a 1:2 stoichiometry, but in an 
asymmetric manner to one protomer. Although this study did 
not resolve detailed interactions at the protein-protein inter-
faces, their fi ndings show that the N- and C-terminal lobes of 
the kinase interact with the N and M domains of Hsp90 in 
an extended conformation. As the nucleotide-binding cleft in 
Cdk4 is located between the lobes, Hsp90 could regulate the 
activity of the kinase by positioning the lobes in close proximity 
relative to each other. The electron density attributed to Cdk4 
covers a hydrophobic patch in Hsp90, which was previously 
identifi ed as important for substrate interactions via mutagen-
esis analyses. Recently, Agard and colleagues provided evi-
dence that a model client containing folded and unfolded parts 
binds between the two protomers of a V-shape conformation of 
 E. coli  Hsp90  (47) . Interestingly, the client-stimulated Hsp90 
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ATPase activity, consistent with earlier observations for GR 
ligand-binding domain and human Hsp90  (48) , and SAXS and 
fl uorescence resonance energy transfer (FRET) data, suggested 
that the client induces structural changes in Hsp90, leading to 
adoption of a more closed conformation. The fi nal conforma-
tion of the Hsp90-client complex also appeared asymmetric, 
as in the case of Cdk4. The signifi cant conformational changes 
in Hsp90 during the ATPase cycle may provide the plastic 
interaction surface required to integrate different states of one 
client and the ensemble of all clients.  

  What is the effect of Hsp90 on clients ?  

 In contrast to Hsp70 and Hsp60 chaperones, Hsp90 cannot 
refold misfolded proteins. For many clients, interactions with 
Hsp90 are essential for prevention of degradation and activity, 
suggesting that Hsp90 prevents unfolding. The majority of cli-
ent proteins are believed to be inactive while in complex with 
Hsp90 but maintained in a state from which rapid activation is 
possible. For example, heat shock factors (HSF1) of  Drosophila  
and vertebrates are found in unstimulated cells in the cytoplasm 
as inactive monomers in complex with Hsp90  (49) . Upon stress 
induction, HSF1 is released, trimerizes, and translocates to the 
nucleus for DNA binding. In yeast, HSF is constitutively tri-
meric and bound to DNA, but still interacts with Hsp90 and 
thus maintained in an inactive state  (50) . Inhibition of Hsp90 
leads to higher basal activity of HSF  (49) . 

 A detailed structural interpretation of chaperone action 
has been proposed for glucocorticoid receptor. In the crys-
tal structures of the ligand-binding domain of SHRs, an 
 α -helix occludes the entrance of the steroid-binding pocket. 
According to the model Hsp70 opens the steroid binding 
pocket by removing this helix and Hsp90 subsequently keeps 
the binding pocket in an open conformation to allow steroid 
binding (51)  . This model suggests a more static function for 
Hsp90 and appears inconsistent with the fi nding that the infl u-
ence of Hsp90 on clients depends on its ATP hydrolysis-cou-
pled conformational cycle  (52) . Moreover, most Hsp90 client 
complexes are believed to be dynamic, as shown for steroid 
hormone receptors  (53) . 

 The fact that Hsp90 does not only play a static function but 
also can substantially infl uence a client ’ s activity is demon-
strated by Hsp90 ’ s interaction with glycogen synthase kinase       
GSK3 β . While bound to Hsp90, GSK3 β  acts as an autophos-
phorylating tyrosine kinase, after release, as a transphospho-
rylating serine/threonine kinase  (54) . Therefore, Hsp90-bound 
clients may perform specifi c functions that differ from those 
of the unbound client. 

 The data collectively indicate that Hsp90 stabilizes defi ned 
conformations of clients, thereby preventing unfolding and 
degradation and preserving functionality, even in the context 
of destabilizing mutations.   

  Interactions of Hsp90 with cochaperones 

 Prokaryotic Hsp90s may only interact with the Hsp70 system, 
as no sequences with similarity to eukaryotic genes encoding 

Hsp90-specifi c cochaperones have been discovered in prokary-
otic genomes to date. In contrast, in eukaryotes, Hsp90-client 
complexes contain many accessory proteins, which assemble 
together with Hsp70 and Hsp90 into a complex machinery. 
The interactions of this Hsp70-Hsp90 machinery with client 
proteins are believed to follow a dynamic chaperone cycle 
originally proposed for interactions with the nuclear proges-
terone receptor (Figure 1)  (53) . The client initially interacts 
with Hsp70 in a J domain protein-assisted process and is sub-
sequently transferred through an intermediate Hsp70-Hsp90-
client complex to Hsp90. The mature Hsp90-client complex 
is believed to dissociate with a client-specifi c half-life (5 min 
for progesterone receptor), and the client re-enters the cycle 
by binding to Hsp70. Progression through this cycle requires 
ATP hydrolysis by Hsp70 and Hsp90 and is regulated by the 
transient association of several cochaperones. New cochap-
erones of the Hsp70-Hsp90 chaperone machine have been 
discovered over the last few years, and the total number is 
currently at about 30 (Table  1  ). Cochaperones regulate pro-
gression through the cycle by inhibiting (Sti1/Hop, Sba1/
p23, Cdc37) or stimulating [Aha1  (3) ] the ATPase activity 
of Hsp90 or by competing for binding to the EEVD motifs 
at the C-termini of Hsp70 and Hsp90 [TPR-containing pro-
teins, such as Sti1/Hop, FKBP51, FKBP52, Cyp40, Cpr6, 
PP5/Ppt1, Tah1, CHIP  (55) ]. Some cochaperones act as a 
scaffold for the early Hsp70-Hsp90 complex (Sti1/Hop) or 
as client-specifi c adaptors and targeting factors (e.g., Cdc37 
for protein kinases, androgen receptor, and hepatitis B virus 
reverse transcriptase  (56) , GCUNC45 for myosin and SHRs, 
Tah1 for snoRNA maintenance machinery). Others have 
enzymatic activity, such as peptidyl-prolyl-isomerases (e.g., 
FKBP52, Cpr6) and the protein phosphatase, PP5/Ppt1, or 
recruit enzymatic activities like the cochaperones CHIP and 
Sgt1 (recruiting ubiquitination machineries). Cofactors addi-
tionally infl uence intracellular localization. For instance, 
FKBP52 enhances nuclear transport of the GR-Hsp90 com-
plex after stimulation with glucocorticoids  (57) . Consistent 
with the diverse functions cochaperones have and with their 
different effects on Hsp90, cochaperones are believed to sta-
bilize Hsp90 in defi ned conformations by interacting with 
specifi c parts as illustrated in Figure 2. 

 Eukaryotic genomes differ substantially in their set of 
cochaperones  (58) . The number of cochaperones has increased 
with the diversifi cation of clientele proteins to augment the 
plasticity of the Hsp70/Hsp90 system and meet their special-
ized requirements. As prokaryotes have no cochaperones and 
minimalistic eukaryotic systems appear to require Hsp70 
and Hsp90 only  (59) , this pair possibly represents the neces-
sary and suffi cient core. The compositions and amounts of 
cochaperones recovered with different substrates vary. Some 
proteins, like Sti1/Hop and Sba1/p23, are considered general 
cochaperones, owing to their presence in many Hsp90-client 
complexes, while others have a more restricted client cohort. 
Table 1 lists the currently known cochaperones, their pre-
sumptive targets, and loss-of-function phenotypes. 

 Consistent with their role in fi ne tuning diverse client pro-
teins, cochaperones show a substantial degree of redundancy, 
with only Cdc37, Sgt1, and Cns1 identifi ed as essential in 
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 Figure 3    Posttranslational modifi cations of Hsp90. 
 (A) Cartoon representations of homology models of human Hsp90 α  (two structures on the left) and human Hsp90 β  (right structure). Modifi ed 
residues are depicted as spheres colored as indicated. Residues specifi ed in the text are labeled. (B) An example of the consequences of Hsp90 
phosphorylation. The Hsp90 client, Swe1, a yeast ortholog of the mammalian cell cycle regulating serine/threonine- and tyrosine-specifi c pro-
tein kinase Wee1, phosphorylates Hsp90 during the S-phase at a single conserved tyrosine in the nucleotide-binding domain. Phosphorylated 
and unphosphorylated Hsp90 differentially interact with cochaperones (shown in blue) and clients (shown in green). Geldanamycin (GA) binds 
unphosphorylated Hsp90 with higher apparent affi nity. Double arrows indicate interactions; dashed lines represent weak interactions [reprinted 
with modifi cations from  (206)  with permission from Elsevier].    

yeast. In higher eukaryotes, several cochaperones have 
become essential for the function of specifi c organs over time, 
such as AIPL1 for the retina and FKBP52 for reproductive 
organs  (60, 61) . Evidently, specialized cochaperones have 
evolved to adapt the Hsp90 machine to the requirements of 
sophisticated clients needed in specifi c differentiated cells. 

 In addition to clients, several cochaperones bind asymmetri-
cally to Hsp90  (46, 55, 62, 63) . Asymmetry may be an impor-
tant feature of the cycling chaperone machine that ensures 
directionality, whereby binding of a factor to one protomer 
primes the other protomer for binding of the next factor.  

  Posttranslational modifi cations of Hsp90 

 Early on, Hsp90 was discovered as a phosphoprotein  (64) . 
Two-dimensional gel electrophoresis revealed the existence of 

several isoforms of Hsp90, which differed in apparent pI. To 
date, more than 40 modifi ed sites have been identifi ed in human 
Hsp90 mainly using mass spectrometry. These sites are dis-
tributed over the entire protein in all three domains (Figure  3  ). 
Phosphorylation, acetylation, methylation,  S -nitrosylation, 
and ubiquitination have been reported. Certain modifi cations 
are isotype-specifi c for human Hsp90 α  or Hsp90 β . Altered 
modifi cation patterns contribute to or occur as a consequence 
of pathological processes  (65 – 68) . The emerging picture of 
the role of posttranslational modifi cations in Hsp90 is rather 
sketchy. A number of major issues remain to be resolved. For 
instance, what is the impact on client and cochaperone bind-
ing and, thus, contribution to the complex regulation of the 
system ?  How dynamic is the global pattern of modifi cation in 
the cellular Hsp90 pool ?  Are there discrete pools with defi ned 
modifi cation codes, and does each class of substrates have its 
own modifi cation requirements ?  
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 Several studies have shown a negative impact of phospho-
rylation and acetylation on client activity and cochaperone 
binding  (66, 67, 69 – 73) , indicating that these modifi cations 
regulate substrate release or prevent client transfer from 
Hsp70 to Hsp90. As different clients deviate in their tempo-
ral and mechanistic requirements for Hsp90 chaperoning, it 
is likely that the impact of the same modifi cation on differ-
ent clients varies as well. For example, phosphorylation of 
S226 (human Hsp90 β ) and S255 (human Hsp90 β ) leads to 
dissociation and inactivation of aryl hydrocarbon receptor 
(AhR)  (67) , dissociation and activation of the apoptotic pro-
tease activating factor (Apaf)-1  (70)  and activation of heme-
sensitive eIF-2 α  kinase  (74) . 

 Regulation of the endothelial nitric oxide synthase (eNOS) 
provides the best known example of how different signaling 
events can induce different Hsp90 modifi cations and alter 
activity toward the same client. Proto-oncogene tyrosine-pro-
tein kinase Src-mediated phosphorylation of Hsp90 at Y301 
(human Hsp90 β ) induced by vascular endothelial growth fac-
tor (VEGF) signaling leads to eNOS binding and activation 
 (75) , phosphorylation at T90 (human Hsp90 α ) by protein 
kinase A (PKA) leads to eNOS dissociation and inactivation 
 (66) , and  S -nitrosylation at C598 (human Hsp90 α ) by eNOS 
itself leads to eNOS inactivation  (76) . 

 Modifi cations differ signifi cantly in their dynamics in vivo. 
While Casein kinase II (CKII) phosphorylation, especially 
at S226 and S255, persists constitutively in vivo  (77) , others 
occur dynamically only during signaling events. Many Hsp90-
modifying enzymes are clients of Hsp90 (Src, serine/threonine/
tyrosine-protein kinase Wee1, serine/threonine-protein kinase 
Akt/Sch9, eNOS), creating negative and positive feedback 
loops. The Hsp90 inhibitor, geldanamycin, which leads to 
the dissociation and degradation of many client proteins, has 
been shown to reduce overall phosphorylation of Hsp90, par-
ticularly at tyrosines  (78, 79) . Clients involved in negative 
feedback loops include Akt/Sch9  (80)  and eNOS  (76) . Wee1 
is the most well-characterized example of a kinase involved 
in a positive feedback loop. Wee1 kinase phosphorylates Y38 
of human Hsp90 α , and the homologous kinase, Swe1, acts on 
the homologous site, Y24, in yeast Hsp82. This event alters 
cochaperone binding, the dynamics of N-terminal dimeriza-
tion in Hsp90, and shifts client specifi city. The activities of 
kinases, including Swe1, and the Hsp90-mediated inhibition 
of yeast HSF depend on phosphorylation of this site. In con-
trast, signaling via steroid hormone receptors appears to occur 
independently, since Swe1 has no effect on GR activity in 
the yeast model system. However, a phosphomimetic variant 
does not support growth of yeast, indicating that chaperoning 
of other essential clients is blocked  (81)  (Figure 3B). This is 
the only known example of a modifi cation essential for one 
client with dynamics crucial for viability. 

 Removal of posttranslational modifi cations in Hsp90 is 
still poorly understood. Knockout of HDAC6, which leads 
to hyperacetylation of Hsp90, has no impact on viability or 
development in mice  (63) , indicating that higher acetylation 
levels can be tolerated without apparent detrimental effects. 
Mice with knockout of the gene encoding the protein phos-
phatase, PP5, that dephosphorylates Hsp90, are viable as well, 

indicating that PP5 is redundant  (82) . Similarly, knockout of 
the PP5 homolog in yeast, Ppt1, leads to no apparent pheno-
type  (83) . With the exception of yeast Ppt1, which dephospho-
rylates CKII-phosphorylated Hsp90, no phosphatases have 
been identifi ed that act on Hsp90. Interestingly, Mollapour 
and coworkers showed that yeast Hsp82 phosphorylated at 
Y24 is ubiquitinated and degraded. However, this does not 
appear to be a general mechanism, since under heat shock 
conditions, the phosphate turnover on Hsp90  (84)  increases 
dramatically, demonstrating the dynamic nature of the sys-
tem. Further studies are essential to determine the enzymes 
participating in the dynamics of posttranslational modifi ca-
tions of Hsp90.  

  Hsp90 in health and disease 

  Regulation of Hsp90 expression in health 

 Mammals possess in the cytosol two Hsp90 isoforms with 
86 %  identity, Hsp90 α  and Hsp90 β , encoded by the genes, 
 HSPC1  ( HSP90AA1 ) and  HSPC3  ( HSP90AB1 ), respec-
tively. These proteins are largely redundant in adults, exert 
comparable effects on clients, and display similar interac-
tion patterns with cochaperones  (85) . In general, isoform  β  
is constitutively expressed and essential at the very early 
stages of embryonic differentiation  (86) , suggesting that at 
least during this period, Hsp90 β  performs a highly specifi c 
function that cannot be substituted by Hsp90 α . Isoform  α  
expression displays profound fl uctuations under diverse 
conditions and, most importantly, is induced by different 
stresses, such as heat shock. The protein shows a dynamic 
expression pattern in mitosis and meiosis and increased 
steady-state levels during development and in the adult ani-
mal in brain and testis. Hsp90 α  is involved in muscle cell 
development  (87)  and myosin chaperoning together with 
the cochaperone GCUNC45  (88) , which, interestingly, has 
fi vefold higher affi nity for the  α -isoform than the  β -isoform 
 (89) . However, in mice, Hsp90 α  is only essential for the 
completion of meiosis in spermatocytes. Both isoforms are 
down regulated in non-dividing differentiating cells (osteo-
blasts and promyelocytic leukemia cells)  (90) . Conversely, 
the  α -isoform is predominantly induced by diverse prolifer-
ation-stimulating extracellular signals  (91) . 

 The presence of an inducible Hsp90 gene ensures fl ex-
ibility of regulation and enables cells to transiently recruit 
additional chaperone power, in particular, processes such as 
stress, major changes in cellular structure (meiosis, mitosis), 
complex protein machines under strain (muscles), or tissues 
with high-energy demand (brain). In mammals, Hsp90 β  can 
accomplish most of these functions, with the exception of 
meiosis in spermatocytes  (92) . 

 Under specifi c conditions, Hsp90 accumulates in the 
nu cleus. Starving yeast retains Hsp90 α  (Hsp82) in the nucleus, 
which may be related to its function in sporulation  (93) . 
Amphibians show nuclear transfer of Hsp90 β  in oocytes and 
early embryogenesis  (94) . Major changes in transcriptional 
programs may require extremely high levels of Hsp90 due to 
its role in transcription and/or chromatin remodeling  (95) .  
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  Cancer 

 Several chaperones, among them Hsp90, are overexpressed 
in cancer cells  (96 – 99) , and high overexpression of chaper-
ones correlates with poor prognosis  (100 – 102) . Cancer cells 
appear to depend on chaperone activity, to a higher extent, 
than normal cells  (103) . First, malignant transformation 
depends on overexpression or mutational activation of proto-
oncogenes, many of which are clients of Hsp90. Activated 
oncoproteins are inherently unstable and depend even more 
on Hsp90 than their proto-oncogenic counterparts  (26, 37, 39, 
41, 104) . Second, many cancer cells exhibit genomic insta-
bility and mutator phenotypes creating mutant proteins or 
fusion constructs that are unstable and depend on chaperones. 
Third, chaperones are required to cope with extreme stress 
conditions that cancer cells have to survive, such as hypoxia 
and acidosis, and eventually, damage induced by chemo-
therapy and radiation. Numerous proto-oncogenic clients of 
Hsp90 are involved in all six hallmarks of cancer proposed by 
Hanahan and Weinberg  (105) . Remarkably, Hsp90 is not only 
involved in chaperoning members of intracellular pathways 
but also acts on the cell surface. Hsp90 α  is secreted to the 
extracellular space through the exosome pathway  (106, 107) . 
Although it remains to be established, if and how it can func-
tion outside the cell as a chaperone, the presence of Hsp90 α  is 
associated with the activity of several extracellular proteins, 
such as metalloprotease 2, which is important for tumor inva-
sion and metastasis. Notably, targeting Hsp90 α  on the surface 
of tumor cells using membrane-impermeable geldanamycin 
derivatives specifi cally decreases their invasiveness  (108) . 

 Membrane-permeable Hsp90 inhibitors accumulate 
in tumor cells  (109)  and have higher affi nity for Hsp90 in 
vivo than in vitro  (103, 110, 111) . Several mechanisms may 
contribute to this increased affi nity of Hsp90 for inhibitors, 
including posttranslational modifi cations  (68, 81) , patterns of 
overexpression of cochaperones  (98, 103) , and in the case of 
drugs with a quinone group (geldanamycin derivatives), the 
NADPH/quinone oxidoreductase 1 level  (112) . Thus, Hsp90 
represents a promising multimodal target for cancer therapy. 
Targeting Hsp90 inhibits the growth of many tumors driven 
by mutated oncoprotein clients, including mast/stem cell 
growth factor receptor tyrosine kinase Kit in gastrointestinal 
stromal tumors, epidermal growth factor receptor tyrosine 
kinase (EGFR) in non-small cell lung cancer, nucleophosmin-
anaplastic lymphoma kinase (NPM-ALK) in anaplastic large 
cell lymphomas, BCR-ABL fusion tyrosine-protein kinase 
in chronic myelogenous leukemia, receptor-type tyrosine-
protein kinase FLT3 in acute myelogenous leukemia, tyrosine-
protein kinase ZAP-70 in chronic lymphocytic leukemia, 
ErbB-2 in breast cancer, and serine/threonine-protein kinase 
B-Raf in myeloma  (113) . An overview on clinical efforts to 
develop Hsp90 inhibitors as anticancer drugs can be found in 
Trepel et al.  (114) . 

 On the other hand, some tumors do not respond to Hsp90 
inhibition and develop resistance or even show enhanced pro-
gression. The main reason seems to be that Hsp90 inhibition 
induces the heat shock response, leading to overexpression 
of Hsp27 or Hsp70 chaperones, which substitute for Hsp90 

function. Moreover, Hsp27 and Hsp70 actively prevent apop-
tosis. Indeed, concomitant inhibition of Hsp70 increases the 
effi cacy of the geldanamycin derivative, 17- N -Allylamino-17-
demethoxygeldanamycin (17-AAG)  (115) . In addition, client 
proteins can acquire mutations that decrease their dependency 
on Hsp90  (37, 42) . Sensitivity to geldanamycin (GA) depends 
on the specifi c isoform  (116) . Most tumors selectively overex-
press the  α -isoform, while others also express the  β -isoform. 
Although Hsp90 β  appears more responsive to inhibitors, it 
also supports chemoresistance  (117) . 

 Subcellular organelles contain specifi c Hsp90 paralogs. 
Changes in organellar homeostasis in cancer cells also promote 
addiction to the resident Hsp90. Mitochondrial Hsp90 homolog 
Trap1 inhibits apoptosis through interactions with cyclophi-
lin D. Altieri and colleagues observed selective apoptosis of 
cancer cells upon targeting Hsp90 inhibitors to mitochondria 
 (118) . Moreover, overexpression of the endoplasmic reticulum 
(ER) Hsp90 homolog Grp94, is correlated with resistance to 
radiotherapy in some cancers  (119) . Grp94 is involved in the 
stress response as well as antigen processing and presenta-
tion. Grp94-peptide complexes represent tumor-specifi c anti-
gens, and researchers have explored their potential as vaccines 
against cancer cells  (107) .  

  Neurodegenerative diseases 

 The hallmark of many neurodegenerative diseases is the 
formation of large extra- and intracellular protein deposits. 
The main constituents of these deposits are characteristic for 
individual diseases. Not the deposits themselves but inter-
mediates generated during the pathway of deposit formation 
are believed to be the toxic species driving the disease. This 
process is regulated differentially by a variety of chaperones. 
Hsp70 and Hsp40 have been shown to rescue cells from tox-
icity and neuronal loss in models of several diseases  (120)  
by mediating proteasomal degradation of the inducing agent 
 (121)  or interfering with the formation of toxic intermediates 
 (122, 123) . In contrast, other studies have reported that Hsp90 
stabilizes the toxic intermediates and promotes inclusion for-
mation  (124, 125) . In addition, in cases when aberrant sig-
naling via deregulated kinases plays a role in disease onset, 
as in tauopathies  (126, 127) , Hsp90 contributes indirectly to 
the process by stabilizing the respective kinases. On the other 
hand, several Hsp90 cochaperones rescue Tau microtubule 
binding  (128) . Hsp90 also inhibits A β  fi bril formation in vitro 
 (30) . Despite these diverse and partly counteracting effects 
of Hsp90, treatment of model systems with Hsp90 inhibitors 
have disclosed promising results  (126, 129 – 131) . Hsp90 inhi-
bition not only abrogates the aforementioned effects but also 
induces the heat shock response, which promotes the levels of 
the  ‘ good ’  chaperones, Hsp70 and Hsp40. 

 One important feature of neurodegeneration is loss of neu-
rons caused by deregulated apoptosis. As during development 
of the brain many more neurons are created than survive in the 
fi nal structure, neurons, probably more than other non-dividing 
cells in the organism, may live constantly on the verge of cell 
death. For their survival, neurons seem to rely on the cytopro-
tective functions of chaperones like Hsp70 and Hsp27, which 
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are highly active in preventing apoptosis. The mitochondrial 
Hsp90 chaperone Trap1 may also contribute to survival of 
neurons.  (118)  Trap1 prevents the release of cytochrome c 
from mitochondria through interactions with cyclophilin D 
 (118) . Trap1 is also linked to neurodegenerative diseases. 
Mutational inactivation of the Trap1-phosphorylating kinase 
PINK1 is a known cause of early onset familial Parkinson ’ s 
disease  (132) . PINK1-mediated phosphorylation of Trap1 
was shown to be protective by oxidative stress and important 
for prevention of apoptosis. PINK1 could only protect neu-
ronal cells when Trap1 levels were not reduced by RNAi. It 
is therefore conceivable that other Trap1-affecting impacts, 
including mutations in Trap1 itself, could be causative in 
Parkinson ’ s disease and potentially other neurodegenerative 
diseases. Moreover, brain cells, like many tumor cells and 
in contrast to cells in most other organs, contain cytosolic 
Hsp90 in mitochondria and targeting of an Hsp90 inhibitor 
to mitochondria-induced apoptosis in tumor cells (has not 
been tested in neurons)  (118) . In contrast, geldanamycin at 
concentrations used in most trials does not induce apoptosis 
in healthy neurons, which might be due to the induction of 
the heat shock response and to compensatory action of Hsp70 
and Hsp27. However, in some pathological cases, Hsp90 may 
be the sole protector against apoptosis  (118, 133) . Therefore, 
the size of the therapeutic window for Hsp90 inhibitor-based 
therapy may vary substantially in individual pathologies.  

  Infections 

 Hsp90 inhibition has therapeutic potential in many infectious 
diseases, a few of which are mentioned below. Intracellular 
pathogens abuse the host chaperone machinery for the com-
pletion of their life cycle  (134, 135) . Viral proteins have appar-
ently evolved such a strong addiction to Hsp90 that despite 
high mutation rates, they are unable to fi nd alternative folding 
pathways  (136) . Extracellular pathogens also rely strongly 
on their own Hsp90 system to cope with the hostile environ-
ment of the host. Interestingly, parasites express Hsp90 on 
the cell surface, and these homologs are suffi ciently diver-
gent from human Hsp90 to serve as antigens for the immune 
system. A monoclonal antibody retrieved from an immunized 
squirrel monkey with protective immunity against malaria 
recognized  Plasmodium  Hsp90  (137, 138) , and a preclini-
cal study has revealed protection against  Candida albicans  
by the recombinant human antibody Mycograb  (139) . Small-
molecule inhibitors are additionally a current focus of medi-
cal research. Downregulation of Hsp90 relieves the fungal 
burden in mice  (140) , and selective inhibitors are effective 
against  Plasmodium falciparum   (141) .  

  Hsp90 and aging 

 Organismic aging is caused by compromised cellular homeo-
stasis, fi tness, and plasticity, leading to degeneration and cell 
death in vital organs. According to the  ‘ garbage catastrophe ’  
hypothesis, aged differentiated cells lose the capacity to dis-
pose of damaged and malfunctioning proteins and organelles 
 (142) . Damaged or misfolded proteins can assume cytotoxic 

properties, and their constant removal is thus essential for 
cell survival. Chaperones preserve cellular homeostasis via 
multiple mechanisms. First, chaperones are involved in qual-
ity control and protein triage decisions. Misfolded proteins 
are ubiquitinated by the Hsp70 and Hsp90 cochaperone and 
U-box E3 ligase CHIP, which effectively targets Hsp70-client 
complexes  (143) . Indeed, CHIP knockout mice display sev-
eral aging phenotypes  (144) . Second, researchers have con-
cordantly observed a decline of the heat shock response with 
age. Hsp90, Hsp70, CHIP, and other cochaperones regu late 
the stability and activity of HSF1, which is the main mediator 
of the heat shock response. Hsp90 is associated with inac-
tive HSF1, maintaining its stability under non-stress condi-
tions, and is also important for termination of the heat shock 
response  (49) . In this manner, Hsp90 contributes to the ability 
of the cell to overcome periods of stress. Third, chaperone-
mediated autophagy and macroautophagy, which contribute 
to the clearance of damaged proteins and organelles, are com-
promised in aging cells  (145, 146) . Fourth, Hsp90 suppresses 
transcriptional noise and preserves the plasticity of cellular 
responses. Transcriptional noise increases with age, leading 
to a decline in the functional integrity of cellular collectives 
 (147) . 

 The apoptosis-inhibiting potential of chaperones directly 
antagonizes their age-counteracting roles. Senescent cells 
acquire resistance to apoptosis, which results in accumula-
tion of unfi t cells that corrupt organ function  (148) . These 
cells continuously accumulate malfunctioning proteins and 
organelles but fail to undergo programmed cell death. Hsp90 
counteracts this vicious cycle by preserving cellular homeo-
stasis. However, Hsp90 also acts as an inhibitor of apoptosis. 
Therefore, higher levels of Hsp90 may have the potential to 
aggravate aging in differentiated tissues. 

 In contrast to differentiated cells, those with proliferating 
potential maintain the ability of self-renewal and disposal of 
damaged inventory by asymmetric distribution during cell 
division  (149) . However, they accumulate mutations and the 
probability to undergo malignant transformation increases 
with age. As high levels of Hsp90 are associated with prolif-
erative potential and inhibition of apoptosis, in dividing cells, 
Hsp90 performs an ambivalent role as well. On the one hand, 
it supports the renewal of tissues and chaperones DNA repair 
enzymes  (150, 151) , and on the other hand, Hsp90 chaper-
ones oncoproteins supporting malignancy. 

 Given this complexity and ambivalence of function, the 
physiological roles of these versatile chaperones, in particu-
lar, Hsp90, in different cellular contexts of aging organisms, 
remain to be elucidated.   

  Hsp90 and evolution 

 Over the course of evolution, phenotypes are selected through 
dynamic interactions with changing environments. The trans-
lation of genotype to phenotype is an extremely complex 
process. Changes in genetic information as well as fl uctua-
tions in the complex network, which regulates the expression 
of genetic information, act on the phenotype. Since Hsp90 
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controls many hubs of this network, it is not surprising that 
it is a multifaceted player in evolution. The organism exists 
in a dynamic balance between stabilizing factors conferring 
network robustness and destabilizing factors contributing to 
DNA instability and fl uctuations in gene expression. Instability 
is evident as a motor of evolvability, whereas robustness 
ensures stable developmental homeostasis and reproduction 
of a persistent phenotype. Genetic networks possess intrinsic 
stochastic noise, which allows genetically identical daughter 
cells of a single mother to interact differently with the envi-
ronment. Thus, one genotype is able to dynamically switch 
between different phenotypes in response to rapid environ-
mental changes. This plasticity is believed to be important 
for differentiation. One phenotypic state can be fi xed at the 
epigenetic level  (152)  and potentially also the genetic level 
by a process known as genetic assimilation  (153) . Transitions 
between stable phenotypes often require multiple mutations, 
whereby each mutation is likely to cause reduced fi tness. The 
most feasible mechanism, which allows the accumulation of 
these mutations simultaneously bypassing iterative periods of 
reduced fi tness, is a phenotypic buffer function also known as 
canalization  (154) . This mechanism would impede the mani-
festation of a phenotype until an environmental challenge or 
intrinsic change, such as mutation in the buffer itself, com-
promises its activity. The architecture of genetic networks 

possesses a robustness originating from functional redun-
dancy, which can buffer loss-of-function mutations  (155) . 
However, the optimal candidates for environmentally respon-
sive buffers, which allow accumulation of polymorphisms, 
are molecular chaperones, in particular, Hsp90. Hsp90 is 
involved in buffering of every aspect of variability, including 
stochastic variation  (156) , chromatin states  (157) , and genetic 
polymorphism. Compromised Hsp90 or stress leads to mani-
festation of pleiotropic phenotypes, many originating from 
hidden polymorphisms  (158) . After a period of selection, 
altered phenotypes can persist even under restored Hsp90 
function, indicating that the enrichment of polymorphisms 
overcomes the buffering capacity of Hsp90 at some point. In 
this way, a new phenotype may become fi xed and heritable. 
Clients and pathways differ in their dependency on Hsp90, 
and therefore, buffer capacity will depend on the pathways 
involved in shaping a phenotype. This applies to genetic vari-
ation as well as plasticity  (156) . Clients can alter dependency 
on Hsp90 by acquiring single mutations to recruit Hsp90 buf-
fer capacity to newly formed unstable pathways or render 
pathways independent and robust  (154) . The canalizer Hsp90 
supports the accumulation of mutations. Conversely, it also 
suppresses the generation of mutations by chaperoning several 
DNA repair proteins, including the high-fi delity translesion 
DNA polymerase- η   (151) , members of the Fanconi anemia 

Mutant clients
Transcription factors

kinases, etc.,

Mutant clients
Transcription factors

kinases, etc.,
Buffering Hsp90

Innate gene expression
Inherent signal transduction
High fidelity translesion DNA repair
Silenced transposons
Stable epigenetic regulation

Network robust
Genome integrity maintained
Accumulation of hidden polymorphisms

Phenotype constsnt Altered phenotypes

Altered phenotype fixed

Continued selection

Additional mutations

genetic drift

Optimal growth conditions Stressful conditions

wt clients wt clients
Transcription factors
kinases, etc.,
DNA Pol η
PIWI
trithorax

Transcription factors
kinases, etc.,

DNA Pol η
PIWI

trithorax

Altered gene expression
Altred signal transduction

Increased mutations
Transposon mobilization

Altered epigenetic regulation

Network labile
Increased mutation rate

 Figure 4    The role of Hsp90 in evolution. 
 Under optimal growth conditions, Hsp90 contributes to network robustness, genome and epigenome integrity, and consequently a stable phe-
notype, via control of the activity and stability of wild-type clients and its buffering effect on mutated clients. The capacitor function of Hsp90 
promotes the accumulation of phenotypically silent polymorphisms. Under stress conditions, the buffering capability of Hsp90 is exhausted, 
and clients have reduced or altered activities, which may lead to altered phenotypes. Moreover, high-fi delity DNA repair (DNA polymerase  η ) 
and transposon maintenance (Piwi) are compromised, leading to an increased mutation rate. Continued selection of an altered phenotype can 
result in stabilization of this phenotype to allow expression, even in the absence of stress.    
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DNA damage response pathway  (150) , and the transposon-
downregulating Piwi proteins  (159) . The observation that 
inhibition of Hsp90 by 17-AAG increases the frequency of 
mutations and chromosomal abnormalities is consistent with 
its proposed role as a guardian of genome integrity. Therefore, 
during stress phases, preexisting mutations manifest and plas-
ticity increases, and mutation rates rise, enhancing genetic 
assimilation and fi xation of a trait (Figure  4  ). 

 The role of epigenetics in the generation of phenotypic vari-
ations is also multifaceted. Chromatin states are dynamic, and 
their fl uctuations may contribute to plasticity, an important 
factor in dynamic adaptation to fast changes in the environ-
ment. Hsp90 chaperones trithorax proteins, which suppress 
phenotypic variations possibly via balanced interplay within 
the complex  (157, 160) . Both Hsp90 and chromatin remodel-
ing proteins are involved in the regulation of transcription, 
which may contribute to the robustness of gene expression 
and phenotypic stability. Interestingly, several members of the 
chromatin remodeling SWI/SNF complex buffer fl uctuations 
in the gene expression network  (155) . However, epigenetic 
regulation also has the potential to fi x one plastic phenotype 
and thus contribute to limited heritability of a trait, which 
could support long-term genetic assimilation  (152) .  

  Expert opinion 

 The unique feature of Hsp90 that makes it a focus of 
research is the overwhelming complexity of interactions 
linking the protein to almost every cellular function. In 
addition, its cochaperones often possess their own Hsp90-
independent interactome. Considering the minimal number 
of interactors of bacterial HtpG, the steep increase in com-
plexity is indicative of intimate coupling to evolution in 
eukaryotes. While lower eukaryotes have a limited number 
of cochaperones and, in some cases, not even those that are 
essential in most eukaryotes, the number of cochaperones 
has increased steadily in metazoans and plants to facilitate 
adaptation of the Hsp90 chaperone machine to the need 
of new specialized clients that are essential for a subset 
of highly specialized cells. Multicellular organisms have 
evolved complicated signaling networks, and many hubs 
of these networks are particularly dependent on Hsp90. 
Accordingly, this extremely versatile protein is the key 
player in fundamental and complex aspects of life, such as 
ontogenesis, aging, and evolution (Figure  5  ). Eukaryotic 
organelles additionally depend on Hsp90 homologs. The 
ER resident protein, Grp94, is involved in the quality con-
trol of protein complexes and antigen presentation, while 
mitochondrial Trap1 participates in protection against 
oxidative stress and regulation of apoptosis. Importantly, 
many pathological processes display an addiction to Hsp90 
chaperone machines. Therefore, the ongoing development 
of small molecule inhibitors of Hsp90, partly in combina-
tion with other therapies, represents an important aspect 
of pharmacological research, and provides a promising 
perspective for the treatment of major diseases, such as 
cancer, neurodegenerative disorders, and infections.  
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 Figure 5    The universe of Hsp90. 
 Hsp90 activates and inactivates clients, infl uences their stability 
and degradation, and buffers mutations. Since the client proteins are 
involved in cell growth, proliferation, differentiation, apoptosis, and 
transformation, Hsp90 affects many physiological and pathophysi-
ological processes, such as development, aging, neurodegeneration, 
and cancer. The infl uence of Hsp90 on key hubs of cellular networks 
affects the plasticity and adaptability of the organism, supporting the 
theory that the protein is an important evolutionary factor.    

  Outlook 

 Despite signifi cant progress in the Hsp90 fi eld, many impor-
tant questions remain unanswered. For instance, how does 
the conformational dynamics of Hsp90 contribute to its chap-
erone function ?  How do posttranslational modifi cations and 
cochaperones regulate the conformational dynamics ?  How 
does conformational adaptability contribute to the recogni-
tion of the multitude of client proteins that are not related in 
sequence or structure ?  What does Hsp90 provoke in its client 
proteins ?  How does Hsp90 coordinate diverse signaling path-
ways with environmental impacts ?  

 Further research using improved experimental techniques 
should aid in resolving the complexity of the Hsp90 chap-
erone machinery. Quantitative mass spectrometry techniques 
allow evaluation of the Hsp90 modifi cation atlas under dif-
ferent conditions with increasing sensitivity, which facilitate 
our understanding of how Hsp90 is fi ne tuned for the bene-
fi t of specifi c clients and adapted to undertake certain tasks. 
Posttranslational modifi cations may positively or negatively 
regulate the cross-talk between different Hsp90-dependent 
processes. Improvement of structural methods should further 
enhance our understanding of the conformational dynamics of 
Hsp90. Hydrogen-deuterium exchange mass spectrometry has 
the potential to resolve conformational changes in space and 
time and allow clarifi cation of the structural consequences of 
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posttranslational modifi cations and interactions with cochap-
erones. Sophisticated single molecule spectroscopy has facil-
itated investigation of the behavior of single Hsp90 dimers 
to link microscopic stochastic processes with macroscopic 
deterministic behavior. Comparison of the dynamics of differ-
ent Hsp90 homologs and mutants in future analyses may help 
to determine the structure-function relationship. Improved 
cryo-EM techniques will also be instrumental in elucidat-
ing the structures of Hsp90-cochaperone and Hsp90-client 
complexes. The discovery of more specialized cochaperones 
should further uncover the adaptability and plasticity of the 
Hsp90 machine. Elucidation of Hsp90-client interactions at 
the structural level remains the most signifi cant challenge 
due to intricate assembly mechanisms, the dynamic nature 
of Hsp90-client complexes, and high aggregation propensity 
of Hsp90 clients. One possible strategy is the purifi cation of 
preassembled complexes from eukaryotic cells. Alternatively, 
one could study minimalistic systems, such as bacterial 
Hsp90 that does not depend on cochaperones or eukaryotic 
substrates, such as p53, that binds to Hsp90 in vitro without 
cochaperones.  

  Highlights 

 In eukaryotes, Hsp90 has evolved into an intricate highly 
dynamic machine regulated by multiple posttranslational 
modifi cations and a host of cochaperones to chaperone 
critical nodes of the cellular interaction network. The high 
degree of fl exibility and plasticity of the Hsp90 system is 
ideally suitable for binding of a diverse set of clients that are 
not related in terms of sequence or structure and multido-
main proteins composed of folded and unstructured regions. 
The suppleness and adaptability of the Hsp90 machine may 
thus have been a driving force in the evolution of more 
complex and highly regulated proteins, as well as protein 
assemblies.     
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