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Abstract

Separation of metabolic pathways in organelles is critical for
eukaryotic life. Accordingly, the number, morphology and
function of organelles have to be maintained through pro-
cesses linked with membrane remodeling events. Despite
their acknowledged significance and intense study many
questions remain about the molecular mechanisms by which
organellar membranes proliferate. Here, using the example
of peroxisome proliferation, we give an overview of how
proteins elongate membranes. Subsequent membrane fission
is achieved by dynamin-related proteins shared with mito-
chondria. We discuss basic criteria that membranes have to
fulfill for these fission factors to complete the scission.
Because peroxisome elongation is always associated with
unequal distribution of matrix and membrane proteins, we
propose peroxisomal division to be non-stochastic and asym-
metric. We further show that these organelles need not be
functional to carry on membrane elongation and present the
most recent findings concerning members of the Pex11 pro-
tein family as membrane elongation factors. These factors,
beside known proteins such as BAR-domain proteins, rep-
resent another family of proteins containing an amphipathic
a-helix with membrane bending activity.

Keywords: amphipathic a-helix; DRP1/DLP1; FIS1;
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Introduction

Eukaryotic life relies on the arrangement of specialized intra-
cellular microenvironments, the organelles, with several
advantages including an increase in efficiency of metabolic
activities. To ensure such functionality, processes exist that
control the number, size and shape of organelles as well as
their positioning during cell cycle progression. The molec-
ular mechanisms triggering these events depend on special-
ized proteins, such as anchoring factors for the cytoskeleton,
motor proteins or membrane shaping factors.

The above-mentioned processes share a common aspect:
they require membrane remodeling and thus proteins that
have the ability to shape the organelle. Proteins exist that
affect membrane curvature, their specialized domain bends
the phospholipid bilayer, thereby stabilizing the charged con-
cave surface of the membrane. In the absence of such mor-
phogenic factors, the endoplasmic reticulum (ER) would be
misshaped, mitochondria or peroxisomes would be unable to
divide and vesicular trafficking, endocytosis or neuronal
function would not be possible.

Evidently, the field of membrane remodeling is very broad
and we are unable to cover it entirely in only few pages.
Therefore, we point at excellent overviews on endocytosis
and vesicular trafficking involving factors such as BAR pro-
teins (1–7). Here, we focus on processes that ensure proper
maintenance of peroxisomes for cellular homeostasis. We
elaborate particularly on proteins involved in the elongation
of the peroxisomal membrane.

The peroxisome, a dynamically shaped

organelle

Peroxisomes integrate into the organellar system in all euka-
ryotic organisms to perform a variety of tasks mostly asso-
ciated with lipid metabolism, e.g., b-oxidation in S.
cerevisiae, methanol oxidation in Y. lipolytica as well as a-
and b-oxidation of very long chain fatty acids or plasmalo-
gen synthesis in mammals, and detoxification of reactive
oxygen species (ROS) (8–11). A role for peroxisomes in
ageing and inflammation response has also been suggested
(12–14). Consequently, the absence of functional peroxi-
somes causes severe diseases eventually leading to early
death, e.g., Zellweger spectrum diseases such as the Zell-
weger syndrome, neonatal adrenoleukodystrophy or infantile
Refsum disease (15–17). Similarly, yeast mutant cells lack-
ing peroxisomes are unable to grow on media containing
fatty acids as the sole carbon source, but they can easily
ferment if the culture medium is supplemented with sugars
such as glucose (18, 19).

To perform their wide-ranging tasks, peroxisomes are
adaptable organelles. Indeed, they exchange material with
the endoplasmic reticulum (ER) and the mitochondria
(20–24). They also adjust their size, shape, number and even
their protein content according to the organism, the tissue or
the environmental conditions (8, 25). To ensure such high
versatility the maintenance of the peroxisomal compartment
must be precisely regulated. Regulatory steps include the
selective degradation of superfluous or elderly peroxisomes
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via micro and macropexophagy, a mechanism conserved
throughout kingdoms (26, 27). In addition, tight regulation
of peroxisome inheritance during cell division was shown to
occur in yeast through the function of specialized proteins
controlling peroxisome positioning in the mother cell or in
the bud (28). Furthermore, when their function is required
peroxisomes can proliferate. Their propagation is either con-
stitutive during cell cycle progression or inducible upon envi-
ronmental pressure, e.g., growth of yeasts on fatty acids;
fibrate supply for rodents or UV-light, high-levels of ROS,
and xenobiotics in mammals (8, 11, 29, 30).

Biogenesis of peroxisomes, a need

for membrane proliferation

What is the origin of the peroxisomal compartment? The
peroxisome field has been highly studied and debated over
the last decades but the mechanistics of peroxisome biogen-
esis and proliferation still requires investigation. However,
owing to the characterization of mutant cells, the use of GFP-
or photoactivatable GFP-fused proteins in vivo, it is now
clear that two main routes lead to peroxisome formation: (i)
de novo biogenesis from the ER and (ii) growth and division
from existing peroxisomes (19, 31–39).

Studies either report on de novo biogenesis or on growth
and division, yet focusing on only one side of peroxisome
proliferation. However, the two pathways leading to forma-
tion of peroxisomes might not be controlled by completely
independent mechanisms. How could the growth and divi-
sion model possibly work without membrane recruitment?
Although a role for the ER in the import of peroxisomal
membrane proteins has been suggested (40, 41), little is
known on how peroxisomes exchange material with the ER
or acquire their membrane lipids.

Generally, most proteins involved in peroxisome biogen-
esis and proliferation belong to the group of PEX genes-
encoded peroxins, most of which act as part of the
peroxisomal matrix protein import machinery (42). Only a
subset of peroxins, to which the Pex11-protein family
belongs, controls the size, shape and number of peroxisomes.
Conceptually, peroxisome proliferation can be divided into
five steps: (i) organellar polarization, (ii) membrane protru-
sion, (iii) membrane elongation, (iv) protein import and (v)
membrane scission (43). While the Pex11 proteins have been
suggested to control the first steps (44), the actual peroxi-
somal membrane scission is performed by factors also
known to operate in mitochondrial fission (45–47).

The Pex11 protein was first identified in the yeast S. cere-
visiae. Deletion of the PEX11 gene led to the occurrence of
fewer and enlarged peroxisomes and upon overexpression of
Pex11p, the cells contained more and smaller peroxisomes
than wild type cells (48). Homologues of ScPex11p are
known in most eukaryotic organisms and these usually con-
tain more than one Pex11 protein (44, 49–60). Depending
on the species, up to three proteins of the Pex11 family were
identified in yeasts, e.g., Pex11p, Pex25p and Pex27p in S.
cerevisiae; Pex11p, Pex11Cp and Pex25p in H. polymorpha;

Pex11p and Pex11Cp in Y. lipolytica; and Pex11p in P. pas-
toris (61). Plants typically contain five Pex11 proteins,
PEX11a to -e, whereas mammals harbor three, namely
PEX11a, PEX11b and PEX11g. Noteworthy, PEX11a,
PEX11b and PEX11g are related to ScPex11p only, and no
homolog has been identified for ScPex25p or ScPex27p in
mammals, so far.

Dynamin-related proteins are involved

in mitochondrial and peroxisomal fission

The role of Pex11 proteins in peroxisome proliferation was
strengthened by the results of several studies notably show-
ing that human PEX11b was able to interact with hFis1, a
component of the peroxisomal fission machinery (43, 62). In
human, the peroxisomal fission apparatus consists of hFis1,
a tail-anchored recruitment factor, and the dynamin-related
protein DRP1/DLP1, the actual scission factor (62–67).
Recently, a new protein, Mff (mitochondrial fission factor),
has been identified that acts in both, mitochondrial and per-
oxisomal fission processes (68). Furthermore, in knockdown
studies Mff RNAi seemed to have a stronger effect than
hFis1 RNAi. Similar to DRP1 knockdown, they induced
tubulation of peroxisomes suggesting that Mff is an impor-
tant player in the process of peroxisome proliferation
(68, 69).

Similarly, in plant proteins of the dynamin family, DRP3A/
B and DRP5, were identified as proliferation factors and
shown to be accountable for peroxisome fission (70–73).
Again, these are recruited to the peroxisomal membrane by
FIS1 proteins, homologues of the mammalian hFis1 (70, 72,
74). In biomolecular fluorescence complementation assays
with split YFP, FIS1B interacted with all five plant Pex11
proteins (70).

In yeasts, the dynamin-like protein Dnm1p was identified
as the peroxisomal membrane scission factor. Dnm1p is
recruited by Fis1p through adaptor proteins, either Mdv1p or
its paralogue Caf4p (45, 75–79). In addition, a second and
apparently independent pathway was identified relying on
the function of another dynamin-related protein, Vps1p, as
fission factor (80–82). In contrast to plant or human, no
interaction between the scission factors and Pex11 proteins
could be established in yeast, so far. Yet, a very recent study
in S. cerevisiae reported the characterization of peroxin 34,
a peroxisomal membrane protein (83). Its interaction with
the Pex11 proteins as well as with Fis1p was illustrated in
yeast-two-hybrid assays establishing the first link between
Pex11 proteins and the fission machinery in yeast. Note-
worthy, Pex34p seems to only exist in yeasts and no homolog
could be identified in higher eukaryotes (83).

Together with the fission machinery, the cytoskeleton also
plays a crucial role in organellar maintenance. Indeed, per-
oxisomes attach to the cytoskeleton and move along cyto-
skeletal tracks i.e., microtubules in human (84, 85) or actin
in plant (86) and yeast (87). Additionally, it has been shown
that organellar fission depends on the cytoskeleton as exem-
plified by Dnm1p-dependent scission of mitochondria in
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Figure 1 Stochastic versus asymmetric peroxisome proliferation.
(A) In a simplified model for peroxisome proliferation, a peroxi-
some grows and elongates and, upon a critical size, the membrane
is constricted and divides through fission. Herein, the inheritance of
membranes and proteins is stochastic. (B) In asymmetric prolifera-
tion, the peroxisome becomes polarized and its membrane elongates
at a specific site reorganizing membrane proteins. The fission
machinery assembles at the site of membrane protrusion and import
of new matrix proteins assembles a daughter peroxisome which sep-
arates from the mother organelle through membrane scission.

S. pombe (88). In human cells, functional microtubules and
dynein motors were shown to be essential for peroxisome
biogenesis (89).

Interactions of Pex11 proteins with fission factors give
some insight into a molecular mechanism for peroxisomal
proliferation; however, many questions remain unanswered.
How does the peroxisomal membrane arrange for scission?
What are the factors involved in the membrane remodeling
process? Do proteins of the Pex11 family organize this whole
process and why do most organisms contain more than one
Pex11 protein? In the following sections we integrate the
most recent findings that tackle these questions.

Mechanistic aspects of peroxisome division,

Pex11 steering membrane elongation

Although several modes of proliferation are possible for
organelles, the peroxisome relies on an apparently simple
growth and division process. A simplified model depicts a
single round-shaped peroxisome starting to elongate (Figure
1A). Once a critical size is reached, the membrane tightens
and constricts until scission occurs through the action of the
fission machinery. This leads to stochastic distribution of lip-
ids and proteins between the two newly formed organelles.
Evidently, this model is questionable: how does a typically
round-shaped organelle start to elongate and what are the
factors that squeeze the membrane and generate the constric-
tion? In a more realistic model, extension of the peroxisome
would be controlled in a concerted manner such that both,
membrane elongation and assembly of the fission machinery
take place at the site of membrane protrusion. Then, scission
would occur across the axe of elongation generating a new
daughter organelle (Figure 1B). Here, two alternatives can

be foreseen, namely (i) non-polarized elongation equally
dividing the peroxisomal matrix content or (ii) polarized
elongation of the membrane followed by protein import at
the site of membrane outgrowth. In such a model the per-
oxisome does not require a constriction factor per se since
the thin membrane protrusion already fulfills the criteria for
scission i.e., suitable membrane diameter to adapt the fission
factors. Nevertheless, in both models proposed the
membrane must elongate and factors are required to initiate
its outgrowth. The findings that the Pex11 proteins interact
with the fission machinery in plant and mammal suggest that
they act as recruitment factor for the fission apparatus. But,
this does not explain how the peroxisomal membrane arrang-
es for fission.

Assessment of the information known about the fission
machinery, especially proteins of the dynamin family, might
allow for mechanistic assumptions. Dynamin proteins,
including DRP1, are self-assembling and self-activating large
GTPases. They typically carry three distinct domains, an N-
terminal GTPase domain, a middle domain and a GTPase
effector domain (GED) at their C-terminus (90). These three
domains arrange into an evolutionary conserved structure:
the middle domain and the GED region form a neck and a
trunk, respectively, whereas the GTPase domain lies on the
top. All dynamin-related proteins dimerize along their
GTPase domain, further stabilized by their GED region (91,
92). This dimerization step seems to correlate with nucle-
otide binding and was proposed to arrange the catalytic
machinery for GTP hydrolysis (93, 94). Recent structural
data however, suggest that the dynamin dimers build spirals
around the membrane in its GDP-bound form, which implies
that GTP hydrolysis is not the trigger for membrane fission
(95). The exact structure of the dynamin spiral is still a mat-
ter of discussion. Nonetheless, it creates such high curvature
and instability in the membrane that the sudden breakdown
of the spiral through GDP dissociation is ultimately resolved
by membrane fission (96, 97). Electron microscopy analyses
showed that Dnm1p-spirals are exactly fitting mitochondrial
constriction sites exhibiting a diameter of about 110 nm.
In vitro, high non-physiological levels of Dnm1p were able
to elongate liposomes (1 mm in diameter) to 110 nm wide
tubules (98). Elegant experiments making use of giant uni-
lamellar vesicles (GUVs) demonstrated that dynamin poly-
merization requires high membrane curvature. The authors
demonstrated that adsorption of dynamin monomers to the
bare tubes did not significantly affect curvature of the
membrane, however, clusters of dynamins occurred by pull-
ing tubes from these GUVs thereby decreasing the tube radius
(99). In agreement, at physiological concentrations, dynamin
proteins were shown to only assemble and function on
already curved membranes (100, 101). In fact, BAR-domain
proteins were reported to prepare the membrane and target
the function of dynamin such as amphiphysin in the scission
of clathrin coated vesicles (101). No BAR-domain protein
has been identified that acts on the peroxisomal membrane.

The conformation of dynamin proteins appears to be reg-
ulated through GTP hydrolysis performed by the intrinsic
GED region thought to function as internal GTPase-activat-
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Figure 2 Pex11 induces peroxisome elongation.
(A) Maximum intensity projection of a confocal microscopic image
showing the effect of ectopic expression of EGFP–HsPEX11b
(green channel) on peroxisomes in human embryonic kidney cells
(HEK293T). The elongated peroxisomal membrane shows segre-
gation of the matrix marker, mCherry–Px (red channel). (B, C) Sin-
gle z-layers from the insert region indicated in panel (A).

ing protein (GAP). However, Lee et al. reported a role for
phospholipase D as external GAP for dynamin increasing its
GTPase activity in a more effective manner than the inherent
GED. The molecular mechanism appears similar to that of
other GAPs based on the positioning of an arginine finger
(102). Interestingly, Erdmann and colleagues showed in S.
cerevisiae that Lpx1p, a phospholipase, is targeted to per-
oxisomes (103). Although this enzyme was suggested to
have a metabolic function, the authors report drastic changes
in peroxisome morphology including membrane invagina-
tions and formation of intra-peroxisomal vesicles in mutant
cells lacking LPX1. It is thus tempting to speculate that
besides its metabolic activities Lpx1p influences the remod-
eling of the peroxisomal membrane during proliferation.

Several studies connected the function of Pex11 proteins
not only to the recruitment of the fission machinery, but also
to peroxisomal membrane remodeling, elongation, prior to
fission (52, 104, 105). In previous studies we showed that
overexpression of Pex11 proteins from yeast, plant and
human resulted in elongation and thereafter clustering of per-
oxisomes in human cells (43). Peroxisome clustering had
already been reported for HsPEX11g only (60). Close anal-
ysis of the peroxisomal clusters in 3D-reconstitutions and
electron microscopy revealed that these are composed of
individual, elongated peroxisomes that intertwined in a
superstructure that we called juxtaposed elongated peroxi-
somes (JEP). Fluorescence recovery after photobleaching
(FRAP) experiments demonstrated that the membranes of the
individual peroxisomes in JEPs did not share components
(43). Furthermore, we observed an evident separation of
matrix and membrane proteins, with the matrix proteins
accumulating at one or both extremities of the
tubular peroxisomes (Figure 2). In parallel, Schrader and
coworkers described the formation of tubular peroxisome
accumulations after overexpression of PEX11b tagged with
YFP at its extreme C-terminus (106). The authors also state
the separation between matrix proteins in the tubular per-
oxisomes and report the differential localization of some per-
oxisomal membrane proteins. Interestingly, the early
peroxisome biogenesis factors, PEX3, PEX16 and PEX19,
were rather found on the stretched and elongated part of the
peroxisome, whereas other membrane proteins, e.g., PMP70,
PMP22 localized to the globular part. A very recent study in

H. polymorpha on differential localization of various per-
oxisomal membrane proteins during membrane elongation
showed that the spatiotemporal dynamic of membrane pro-
teins ultimately depends on Pex11p function (107).

Asymmetric division of peroxisomes –

segregation of the matrix protein content

The finding that upon Pex11 overexpression matrix proteins
were unequally distributed alongside JEP cast some doubts
about the current view that peroxisome division is stochastic.
The observation could be merely due to a dilution effect with
low amounts of matrix proteins in the elongated structures
being below the detection limit in fluorescence microscopy.
Alternatively, during the process of membrane protrusion
matrix proteins could be sequestered leading to their exclu-
sion from the thin tubular elongation. To differentiate
between the two possibilities we measured repetitive fluo-
rescence decay after photoactivation (rFDAP) of photoacti-
vatable-GFP targeted either to mitochondria (paGFP-Mito)
or to peroxisomes (paGFP-Px). A small region in mitochon-
dria was photoactivated and the GFP signal was monitored
in living mammalian cells. Mitochondria constantly fuse and
divide giving them a network-like appearance. Hence, the
paGFP-Mito signal could quickly diffuse through the mito-
chondrial network (Figure 3A, B). In contrast, in cells co-
expressing mRFP-HsPEX11b and paGFP-Px the activated
GFP signal did not decline with time suggesting that paGFP-
Px remained static and sequestered at one side of the elon-
gated peroxisomal membrane (Figure 3C, D). In agreement
with this observation, using the HALO-tag, Delille
et al. demonstrated that the matrix content in the globular
part of the elongated peroxisomes was present before
membrane elongation occurred (106). In summary, under the
effect of PEX11 peroxisomes elongate in a polarized fashion
leaving their matrix content trapped at its original position
although we cannot exclude that limited diffusion of small
amounts of matrix content occurs during the elongation pro-
cess. Hence, elongation of the peroxisomal membrane seems
to create a matrix protein gradient, thereby segregating the
‘old’ matrix from the ‘new’ membrane. Segregation of matrix
proteins during peroxisome elongation could ensure that old
and possibly damaged proteins do not populate the new
organelle. New matrix proteins would then target to the tip
of the new membrane thereby inflating the new peroxisome
and modeling the membrane constriction required for fission.

The observations by Delille et al. upon expression of a
PEX11b-YFP suggest that the chimera inhibits peroxisomal
fission while allowing their elongation. We showed that
PEX11-driven peroxisomal elongation and even JEPs could
be dissolved by providing high amounts of hFis1 to the cells
(43). Interestingly, overexpression of the dynamin protein,
DRP1, led to the appearance of elongated peroxisomes or to
an increase in JEP size in cells expressing PEX11 proteins
rather than to fission. These findings place hFis1 as limiting
factor in the process of peroxisomal fission and highlight the
importance of PEX11 as recruitment factor.
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Figure 3 Peroxisomal matrix proteins are kept back during peroxisome elongation.
HEK293T cells expressing either the mitochondrial matrix marker, paGFP-mito (A, B), or the peroxisomal matrix marker, paGFP-Px and
mRFP-HsPEX11g (C, D) were analyzed 48 h after transfection. Diffusion of matrix proteins was analyzed in repetitive fluorescence decay
after photoactivation (rFDAP) experiments. paGFP was activated in a small area and fluorescence was monitored for decay along with
measurement of fluorescence gain in the rest of the cell. (A) For mitochondria, repetitive activation of a single area (white crosses) led to
rapid diffusion of the paGFP signal throughout the mitochondrial network. (B) Quantification of (A) showing fluorescence decay in the
activated region (blue line) and gain of fluorescence in the non-activated region (red line). (C) paGFP was activated in JEPs caused by
overexpression of mRFP-HsPEX11g. Since no decay was measured in the activated region (white cross 150), a second area was activated
(white cross 1500). (D) Quantification clearly shows that no signal was lost during acquisition and no diffusion took place. Image acquisition
parameters: LSM DuoScan (ApoChromat 63x1.4; settings: paGFP (489 nm, MBS490, BP 500–525), mRFP (532 nm, MBS 535, BP
560–675); activation: 405 nm).

Recent experiments on mitochondrial fission described
that Mff, another tail-anchored protein, is the ultimate
recruiter of hFis1 for membrane fission (69). Although this
latter study focused on mitochondrial fission, it had been
shown earlier that Mff also played a role in peroxisome pro-
liferation (68). Indeed, mammalian cells transfected with Mff
RNAi presented peroxisomes that were more elongated than
peroxisomes in cells depleted for hFis1. In consequence,
assuming that the interplay between Mff, hFis1 and DRP1
is comparable in mitochondrial and peroxisomal fission,
hFis1 might rather modulate DRP1 function than act as
recruitment factor. In the light of these new observations it

would be intriguing to test whether Pex11 proteins interact
with Mff. Interaction with hFis1 only would suggest that
Pex11 proteins act as membrane elongation factors, which
stimulate the fission machinery. But, interaction with both,
Mff and hFis1, would strengthen the role of Pex11 proteins
in powering fission of the peroxisomal membrane.

Pex11 proteins elongate membranes in vitro

All these findings strongly point at the involvement of the
Pex11 proteins in the membrane elongation event. A first
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Figure 4 Amphipathic helices as membrane curvature sensors or
inducers.
(A) A positively charged amphipathic helix leads to membrane
bending upon insertion into one leaflet of the lipid bilayer. The
energy cost for helix insertion can be compensated through electro-
static interactions. (B) If the amphipathic helix displays a negatively
charged surface, it cannot deform the membrane, and acts as
membrane curvature sensor.

hint about the molecular function of Pex11p was presented
by Opalinski et al. (2010). The authors report the presence
of an amphipathic a-helix at the N-terminus of several Pex11
proteins from yeast to mammal (108). Incubation of peptides
containing the Pex11 amphipathic region with small unila-
mellar vesicles (SUVs) clearly showed an ability to restruc-
ture membranes. The initially round SUVs elongated and
formed tubules in the presence of the Pex11 peptides. Similar
results were obtained using the purified first 95 amino acids
of P. chrysogenum Pex11p. The size and shape of the elon-
gated SUVs could be altered by introducing bulky trypto-
phan residues in the amphipathic peptide. Changes in the
peptide composition, such as introduction of negative charg-
es or proline residues, annihilated the effect on membrane
elongation. In vivo, expression of a mutated Pex11p protein
lacking this alpha-helix was unable to protrude the peroxi-
somal membrane suggesting a mechanistic role for this hel-
ical structure in membrane elongation.

Amphipathic helices have been reported in a variety of
proteins, well-known examples being the BAR proteins
(1, 109–112). It has been suggested that two types of amphi-
pathic helices exist namely, curvature sensors or inducers
(113). Upon insertion of the helix into one leaflet of the lipid
bilayer, the space requirement of this leaflet increases with
respect to the other, which leads to membrane bending (Fig-
ure 4). This insertion requires the lipids to be pushed aside.
If the energy cost is compensated by the presence of posi-
tively charged amino acids, it favors interaction between the
charged head groups of the lipids and the polar face of the
amphipathic helix, the helix can actively curve the membrane
(Figure 4A). Alternatively, the helix contains mainly nega-
tively charged residues, which hinder its insertion into a flat
membrane. Hence, such helices are unable to induce
membrane curvature and require a membrane already curved
to insert. These amphipathic helices are membrane curvature
sensors (Figure 4B). Evidently, this mechanism depends on
the nature of the membrane including its lipid composition
and local enrichment in specific lipids. Indeed, the often
neglected physical properties of membrane lipids might
determine the limits in which proteins can act (114). A well-

studied example of curvature sensors is the ArfGAP1 lipid
packing sensor (ALPS) motif, which contains numerous ser-
ine and threonine residues that favor its adsorption onto
membranes with strong positive curvature (113). Curvature
inducers are for instance the BAR domain proteins. The N-
BAR domain e.g., in endophilin adopts a banana-wedge
shape that bends the membrane to give it a curved form.
Interestingly, mathematic modeling suggests that induction
of membrane curvature relies on the sole property of the
amphipathic helix and not on the entire N–BAR domain
(115).

Consequently, amphipathic helices play pivotal roles in a
plethora of intracellular processes and their presence in
Pex11 proteins seems to be crucial for proliferation of the
peroxisomal membrane. The generation of high curvature in
the peroxisomal membrane could explain the redistribution
of peroxisomal membrane proteins along the peroxisome
tubules. Recent quantitative fluorescence microscopy analy-
ses showed that membrane curvature as such can account for
redistribution of integral or membrane anchored proteins
(116). In the context of peroxisome proliferation such reor-
ganization could lead to (i) attraction of the fission machin-
ery and (ii) redistribution of membrane proteins including
the import machinery to ensure efficient transport of matrix
proteins into the newly formed peroxisome. Because the
polar face of the Pex11 amphipathic helix contains lysine
and arginine residues, it seems to rather induce membrane
curvature. However, membrane curvature still needs to be
tightly regulated. No polarized outgrowth would occur if all
Pex11 amphipathic helices equally distributed and inserted
into the peroxisomal membrane. Therefore, spatiotemporally
confined protrusion has to be established to ensure elonga-
tion of the peroxisomal membrane. Thus, a strict control is
required for Pex11 protein positioning on the membrane or
for molecular interactions. This could arise through post-
translational modifications. A study in the yeast S. cerevisiae
showed that Pex11p is modified through phosphorylation.
Cells expressing a phospho-mimicry mutant of Pex11p dis-
played more and smaller (S™D, ‘phosphorylated’) or less
and bigger (S™A, ‘non-phosphorylated’) peroxisomes than
wild type cells (117).

Several Pex11 proteins interact to orchestrate

peroxisome proliferation

The interplay of the various Pex11 proteins in organisms that
contain more than one Pex11 protein remains to be eluci-
dated. Earlier studies showed the homodimerization proper-
ties of several Pex11 proteins including the human PEX11b
and ScPex11p (62, 118). In addition to ScPex11p homodi-
merization, yeast-2-hybrid analyses showed homo-dimeri-
zation of ScPex25p and ScPex27p, respectively, but no
hetero-oligomerization (56). In human cells, all three Pex11
proteins homo-oligomerized and both, PEX11a and PEX11b
were shown to interact with PEX11g. Co-immuno-
precipitation experiments also revealed that the three proteins
interacted with the fission machinery (43). In vitro binding
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Figure 5 Pex11 membrane elongation factors do not require peroxisomal matrix content to function.
Analysis of mutant fibroblast cells with mutated PEX5 containing empty peroxisomal membranes for the effect of ectopic expression of
GFP-tagged human Pex11 proteins. Pex11 proteins elongated the peroxisomal membrane in the absence of matrix content as demonstrated
by immunofluorescent stainings for the peroxisomal membrane protein PEX14 (red channel, upper panel) and the matrix protein catalase
(red channel, lower panel). Images represent maximum intensity projection of confocal images acquired on a LSM510META wobjective
100=1.45; settings: EGFP (488 nm, MBS 488, BP 500–525), AlexaFluor594 (561 nm, MBS 561, LP 585)x.

assays demonstrated a direct interaction between HsPEX11b
and hFis1 (62). Importantly, all these experiments were per-
formed using digitonin, a mild detergent that preserves lipid
environment, and the addition of Triton X-100 abolished
interactions. This implies the requirement of membrane lip-
ids for interactions. The orientation of several Pex11 proteins
has been studied based on differential cell permeabilization
with digitonin or protease accessibility of their extreme ter-
mini (50, 52, 60, 105, 119) however, their exact topology in
the membrane remains to be elucidated. Hence, such infor-
mation would be important to comprehend the mutual influ-
ence of Pex11 proteins and the fission machinery.

It is still unclear whether all Pex11 proteins are equally
important for peroxisome proliferation. In yeast, the absence
of Pex11p resulted in reduced growth of the cells on oleic
acid (48) and in the abscence of Pex11p, Pex25p and Pex27p
cells were unable to grow on oleate-containing medium.
Interestingly, Pex25p alone was able to rescue the oleate non-
utilizing phenotype of the pex11Dpex25Dpex27D mutant
cells (56). In mammal, while PEX11a expression is induci-
ble, PEX11b is constitutively present in the cell (49, 50, 120,
121). Knockout mouse models showed that in the absence
of PEX11b mice developed pathologies similar to those of
Zellweger patients and the number of peroxisomes per cell
was significantly decreased (121, 122). Deletion of PEX11a
did not have a phenotype neither did it worsen the condition
in PEX11a–/–/b–/– mice (120). These data suggest that in
mammal, two routes exist for peroxisome proliferation, one
inducible and one constitutive, driven by either PEX11a or
PEX11b, respectively. Both ways might require the function
of PEX11g. Homodimerization, interaction with PEX11g or
both could allow for recruitment of the fission machinery.
Analysis of PEX11b suggested that its C-terminus
was required to interact with hFis1 (62). Proteineaceous

interactions were proposed to depend on one of the tetratri-
copeptide repeat (TPR) regions of hFis1 (123). Peptide-scan
analyses demonstrated that proline-rich peptides efficiently
bind hFis1, specifically in the TPR region (124). Interesting-
ly, plant and human Pex11 proteins contain proline-rich
regions, among which some resemble a Fis1 binding site. In
contrast, none of the S. cerevisiae Pex11 family member con-
tains such motif suggesting that in this species Pex11 pro-
teins might not directly recruit Fis1 to peroxisomes.

Oligomerization of Pex11 proteins could regulate their
activity. In S. cerevisiae, dimerization of Pex11p was sug-
gested to act as molecular switch. Considering that ScPex11p
was localized to the inner surface of the peroxisomal
membrane it could easily be influenced by the peroxisomal
redox state. Hence, redox-sensitive dimerization of Pex11p
could represent a signal for proliferation (118). A redox-sen-
sitive dimerization of Pex11 proteins has not been reported
in mammalian cells. However, a recent study investigated the
mammalian peroxisomes redox-balance using a redox-sen-
sitive variant of EGFP and an artificial light-triggered ROS-
induction protein. The authors demonstrate that although
peroxisomes resist to an oxidative stress produced elsewhere
in the cell, the intraperoxisomal redox status is strongly
affected by the environmental growth conditions. Interest-
ingly, the redox state of peroxisomes did not correlate with
their age (125).

To address whether the peroxisomal matrix content exerts
an influence on the function of Pex11 proteins we assessed
whether PEX11 could act on empty peroxisomal membranes
(remnants) in cells expressing a mutated PEX5, a receptor
for peroxisomal matrix proteins (126). Most peroxisome
remnants elongated and formed JEPs upon overexpression of
either of the human Pex11 proteins (Figure 5). This obser-
vation points to an independent mode of regulation for per-
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oxisome function and proliferation. Nevertheless, the
expression of some Pex11 proteins is tightly regulated, which
allows for coordination of the proliferation machinery and
the metabolic state of peroxisomes. Alternatively, matrix pro-
teins could affect the properties of the peroxisomal
membrane thereby modulating proliferation of the organelle
as already suggested for the peroxisomal enzyme acyl-CoA
oxidase in Yarrowia lipolytica (127).

Perspectives

Recent reports placed the Pex11 proteins as key actors in the
process of peroxisomal membrane remodeling. These pro-
teins elongate the peroxisomal membrane. It will be impor-
tant to test how their positioning selects the site of membrane
protrusion, and how they interact with the fission machinery
to coordinate membrane scission. Future experiments will be
required to determine whether Pex11 proteins represent a
new family of amphipathic alpha-helix-containing proteins
with membrane bending activities.

Furthermore, evidence exists that peroxisome elongation
is polarized. Asymmetric division of the matrix protein con-
tent during membrane elongation might allow for import of
new material at the site of membrane growth. We propose
this mechanism to ensure selective retention instead of dilu-
tion of old matrix content. Whether the selective degradation
of peroxisomes via pexophagy is specifically targeted to old
organelles is an attractive question.

Although the distribution of matrix proteins seems to be
highly regulated, the action of the Pex11 proteins does not
depend on the functionality or maturity of the peroxisomes.
As shown in our experiments, overexpressed Pex11 acts on
the membrane obviously without requiring feedback from the
matrix. It remains to be elucidated whether the function of
the Pex11 proteins is directly or indirectly influenced by the
metabolic state of the cell.

The Pex11 interactome was shown to require the integrity
of the peroxisomal membrane. Thus, understanding the
membrane topology of Pex11 proteins is important in order
to gain insight in its role as membrane elongation factor.
Eventually, structural studies will deliver the missing ele-
ments to understand how these proteins act at the molecular
level.

In conclusion, the two pathways leading to peroxisome
formation, de novo biogenesis and growth and division, are
presumably connected at the stage of membrane uptake.
Consequently, with Pex11 proteins as membrane shaping fac-
tors, it would not be surprising that some of these proteins
also contribute to de novo peroxisome biogenesis from the
ER. Interestingly, a very recent study on the identification of
peroxisome biogenesis factors in the yeast H. polymorpha
revealed the importance of Pex25p for the reintroduction of
peroxisomes in mutant cells lacking these organelles (128).
Noteworthy, an interaction between the rat PEX11 and Arf1/
coatomer has been reported and coatomer inhibition in tem-
perature sensitive CHO-mutant cells correlated with the
occurrence of tubular peroxisomes (119).

Alterations in peroxisomal metabolism and peroxisome
proliferation cause neurodegenerative diseases and might
also represent a trigger for cellular ageing. Understanding
how peroxisomes proliferate and, more specifically, generate
membrane protrusion to facilitate scission, will have a major
impact on understanding the dynamics of biological mem-
branes. The concept of organelle polarization and asymmet-
ric membrane growth and division might engage the
re-investigation of the proliferation of other organellar
membranes.

Highlights

• Most organisms contain more than one Pex11 protein and
all Pex11 proteins act on the peroxisomal membrane

• Pex11 proteins are regulated at transcriptional, and post-
translational levels through modifications as well as
homo- and heterodimerization

• Pex11 proteins influence the shape of the peroxisomal
membrane

• Pex11 proteins coordinate the fission machinery shared
between peroxisomes and mitochondria

• Pex11 proteins contain an amphipathic alpha-helix sug-
gested to bend the peroxisomal membrane

• Pex11 proteins act as membrane elongation factors
regardless of whether peroxisomes are functional

• Asymmetric inheritance of peroxisomal matrix proteins
during peroxisome proliferation might lead to rejuvena-
tion of the peroxisome pool in the cell
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