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Abstract

Originally, the finding of a particular distribution of cytidine-
guanosine dinucleotides (CpGs) in genomic DNA was con-
sidered to be an interesting structural feature of eukaryotic
genome organization. Despite a global depletion of CpGs,
genes are frequently associated with CpG clusters called
CpG islands (CGIs). CGIs are prevalently unmethylated but
often found methylated in pathologic situations. On the other
hand, CpGs outside of CGIs are generally methylated and
are found mainly in the heterochromatic fraction of the
genome. Hypomethylation of those CpGs is associated with
genomic instability in malignancy. Additionally, CpG-rich
and CpG-poor regions, as well as CpG-shores, are defined.
Usually, the methylation status inversely correlates with gene
expression. Methylation of CpGs, as well as demethylation
and generation of hydroxmethyl-cytosines, is strictly regu-
lated during development and differentiation. This review
deals with the relevance of the organizational features of
CpGs and their relation to each other.
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Introduction

Epigenetics refers to meiotically and mitotically heritable
changes in gene expression that are not coded in the DNA
sequence itself. In eukaryotes, epigenetic processes mainly
include DNA methylation and histone modifications (1). In
the human genome, the cytosines of CpG dinucleotides are
methylated at the 5 position. However, 5-methylcytosine is
sensitive to deamination (2) yielding thymidine, which pairs
with adenosine when DNA is replicated. In the course of
evolution, this has led to a general depletion of CpG dinu-
cleotides in the genome to about 20%–25% of the expected
number, of which about 80% are still methylated. More than

90% of the methylated CpG dinucleotides are found in the
heterochromatic fraction of the genome. The non-methylated
CpG dinucleotides are arranged as CpG-islands (CGIs) in
dense clusters located at promoters of about 60% of the
genes; these include all housekeeping genes and about half
of tissue-specific genes (3, 4). In addition, other types of
CpG aggregates have been characterized, namely CpG-poor
promoters, CpG-rich promoters and CpG-shores. CpG-poor
promoters have been discussed in contrast to CGIs: the CpG
frequency at such promoters is similar to the genome aver-
age, but their frequency at CpG island promoters is approx-
imately 10-fold higher (5). Compared with the average of
the genome, CpG-rich promoters have an increased number
of CpGs. However, in such structures, the CpGs are consid-
erably less densely clustered than in CGIs and are often
localized near, or between, CGIs (6–11). CpG-shores are
CpG-rich structures, which are localized up to 2000 bp dis-
tant to CGIs; they are strongly involved in gene regulation
(12, 13). This review focuses on DNA-methylation, sum-
marizes recent research on the dynamics of DNA-methyla-
tion and analyzes the arrangement and organization of CpG
dinucleotides, as well as their functional relevance. In addi-
tion, the mechanistic aspects of how DNA methylation and
demethylation can be achieved and regulated are covered.

The machinery involved in DNA methylation

In eukaryotes the majority of CpG dinucleotides are chemi-
cally modified by covalent attachment of a methyl group to
the C5 position of the cytosine ring. This modification is
catalyzed by DNA (cytosine-5-)-methyltransferases (DNMTs)
encoded by a highly conserved gene family. These enzymes
transfer a methyl-group from S-adenosylmethionine (SAM)
to a base of the DNA, in particular, to a cytosine at the
5 position, leaving S-adenosylhomocysteine (SAH), which is
in equilibrium with homocysteine. The tetrahydrofolate/
folate cycle regenerates SAM via methionine. Homocysteine
is discharged either to methionine, catalyzed by vitamin B12-
dependent methionine synthase or it can metabolize to cys-
tathione, catalyzed by cystathione synthase using vitamin B6
as the cofactor. Mutations of enzymes from this pathway, or
deficiency either in folate (vitamin B9) or vitamin B6 or
B12, could cause the accumulation of homocysteine (Figure
1). This could result in high SAH levels that inhibit the meth-
yl-donor activity of SAM, thus blocking DNMT-dependent
DNA methylation. Moreover, elevated serum levels of homo-
cysteine also represent a risk factor for several chronic dis-
orders, such as cardiovascular disease, atherosclerosis,
chronic renal failure, diabetes, or metabolic syndrome (14,
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Figure 1 The THF/folate cycle regenerates methionine, which is necessary for methylation of the cytosines to 5-methylcytosine.
The methyl group of SAM is transferred to the cytosines of the DNA yielding methylated DNA (DNAm). The biochemical reaction is
catalyzed by DNMTs leaving SAH. SAH is regenerated by the folate metabolic pathway. The pathway depends on folate, vitamin B6 and
B12. Depletion of the vitamins, mutations of methylene-THF reductase, or cystathione synthase could result in an increased homocysteine
serum level and reduced availability of SAM. SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; DNAm, methylated DNA; THF,
tetrahydrofolate.

15). Furthermore, hyperhomocysteinemia is known to affect
bone development and homeostasis (16, 17). This could be
the result of reduced collagen quality caused by marred col-
lagen cross-links. The latter is caused by a homocysteine-
dependent inhibition of lysyl oxidase (Lox) (18), which is
the collagen cross-linking enzyme and a tumor suppressor
gene (19). However, homocysteine also down-regulates LOX-
expression by increasing DNA-cytosine methylation (10).

As mentioned above, DNMTs are a family of genes con-
served in eukaryotes. Homologous genes were found in
algae, fungi (except yeasts) worms, insects, plants and ani-
mals (20). In mammals, three DNMT families (DNMT1,
DNMT2, DNMT3), together with their isoforms, are found
(21). Currently, four DNMT1 isoforms are described, which
function as maintenance DNMTs propagating pre-existing
methylation patterns of hemimethylated DNA (22) to newly
synthesized daughter strands during the cell cycle; its expres-
sion level is critical for maintenance of imprints during early
embryogenesis (23, 24).

DNMT2 is a truncated protein showing no, or only weak,
methyl-transferase activity. The specificity of this enzyme for
methylating ‘non-CpG’ cytosines in Drosophila (25) is con-
troversial (26). Recent results suggest that tRNA could be a
substrate (27, 28). Although DNMT2 was studied in several
model metazoans, its function is still not clear (29).

The DNMT3 family includes DNMT3A, DNMT3B, as well
as many of the isoforms that emerge from alternative splic-
ing. They act at different stages of animal development and
also show tissue specific expression (21, 29). Both DNMT3A
and DNMT3B are de novo DNMTs for the establishment of
methylation patterns of originally unmethylated DNA (30,
31). Both genes are indispensable for embryogenesis, oper-
ating at different stages of embryogenesis. Thus, they may
contribute distinct functions during early development and
differentiation (32). The third member of this family,
DNMT3L (DNA methyltransferase3-like), lacks catalytic

activity and is unable to transfer methyl-groups to the DNA.
However, it activates DNMT3A and DNMT3B to induce and
improve their catalytic activity (33). Targeted disruption of
Dnmt3L prevents methylation of sequences that are normally
methylated on the maternal allele, while global genome
methylation levels remain unaffected (34). Embryonic stem
cells that lack DNMt3L expression are essentially incapable
of de novo methylation of newly integrated retroviral DNA
and lose DNA methylation during culture time in vitro (35).
DNMT3L mostly stimulates DNA methylation at poorly
methylated sites, thus generating more uniform patterns. It
modulates the intrinsic sequence preferences of DNMT3A
and DNMT3B for distinct flanking sequences of target CpG
sites (36). In human embryonic kidney cells (HEK 293) sta-
bly transfected with each of the 13 different DNMTs, as well
as some of their isoforms, it has been shown that DNMTs
have specific and overlapping target sites. Different isoforms
(mainly the de novo methylating enzymes) differentially
methylate repetitive DNA elements that are initially hypo-
methylated in these cells. Genes associated with histone
(H3K4me3) modifications, which are transcriptionally
active, are the preferred target sites of DNMT3A1, whereas
the specific target sites of DNMT3B1 are associated with
histone (H3K27me3) modifications that are transcriptionally
inactive. In this model system, transfection of DNMT3L or
DNMT1 has induced the methylation of a relatively small
number of sites compared to the de novo DNMT3A and
DNMT3B, suggesting cooperation with endogenous de novo
methylases at specific CpG sites. These findings could
explain specific gene methylation-patterns in tumors where
increased expression of DNMT isoforms has been found
(37). The specificity of DNA-methylation by different
DNMTs is additionally steered by modification of histones
(38), which may be controlled by Polycomb-group (PcG)
proteins (39, 40) in cooperation with histone deacetylases
and other repressors of transcription (41).
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A key role in this process has been assigned to Hells,
firstly described as lymphoid-specific helicase (LSH). It is
required for genome-wide CpG methylation in plants and
mammals (42–45). Hells has been described as an epigenetic
guardian of the genome to protect against activation of retro-
viral transposable elements, thus stabilizing the genome (46,
47). In association with DNA-methyltransferases, DNMT3A
and DNMT3B, Hells is involved in de novo CpG methyla-
tion (48). Careful evaluation of Hells-depleted mice revealed
that these mice show premature aging with, for example
graying and loss of hair, reduced skin fat deposition and
osteoporosis (49, 50). Beyond global DNA CpG methylation
of heterochromatic transposable elements, Hells is involved
in the silencing of both stem cell genes (51) and develop-
mentally regulated homeobox (Hox) genes by CpG-
methylation (52). Hells is co-regulated with DNMT1 when
extracellular collagen matrix prevents up-regulation of the
apoptosis mediator Fas (TNF receptor superfamily member
6) in pre-osteoblasts by promoter CpG methylation (11). For
Fas promoter methylation, a plethora of genes are involved
(41); in particular, the cooperation of histone methylases with
Hells is required for developmentally programmed DNA
methylation (53). A direct transcriptional regulation of
DNMT1 by Friend leukemia integration 1 (Fli) via Janus
kinase 2 (Jak2) was recently demonstrated by interleukin
6-(IL6) mediated silencing of the collagen cross linker and
tumor suppressor Lox by CpG-methylation; for this process
co-regulation of DNMT3b and Hells was also found (10).
These data suggest that HELLS, similarly to DNMT3L,
supports catalytically active DNMTs during specific DNA
CpG promoter methylation.

Demethylation: physiologically, spontaneously

or by drugs

Until recently, CpG methylation has been considered as a
stable epigenetic mark as active demethylation by enzymatic
breakage of the C-C bonding is an unfavorable process, at
least from the thermodynamic point of view. Removal of the
methyl-groups from the cytosines occurs passively during
replication when the methylation machinery is omitted (e.g.,
down-regulation of DNMTs), or by drug-mediated DNMT-
inhibition and histone (re)acetylation (54, 55). This fact has
provided the theoretical basis for treatment protocols in
numerous malignancies (56–60). Passive demethylation
leads to hypomethylation, as was found in tumorigenesis and
aging. Mice expressing only 10% of the wild-type level of
the DNMT1 showed tremendous global hypomethylation
(61). Down-regulation of DNMT1 with concomitant deme-
thylation of the Fas promoter was found in MC3T3-E1 cells
when collagen was dispensed as a growth support (11). In
addition to down-regulation of DNMT1, interaction of
DNMT1 with RB1, HDAC1 and E2F1 has also been found,
which is responsible for transcriptional repression. Moreover,
this finding supports a link between transcriptional repres-
sion and sequence-specific DNA-demethylation (62).

However, reversibility is a basic requirement for a process
that should function as a cellular signal, although, as men-
tioned above, C-C binding is chemically very stable. Such

considerations led to a search for enzymes that execute active
DNA-demethylation (63). Findings of a tight correlation
between chromatin structure, gene expression and DNA-
methylation further supported a concept of active DNA-
demethylation (64), a process which begins with the opening
of the chromatin structure by histone acetylation. However,
acetylation of histones is not sufficient for demethylation and
active transcription of the respective genes by RNA-
polymerase II is required for DNA-demethylation. The
results of those experiments have suggested that, for this pro-
cess, an active DNA-methylation is required (65). Further-
more, observations of paternal genome-wide demethylation
in many mammals after fertilization suggested the existence
of an active 59-methyl-cytosine (5mC) demethylation process
(2, 64). Early findings suggested an enzyme that directly
removes methyl-groups by oxidizing it to methanol (66). Lat-
er, this demethylation pathway was confirmed by means of
recombinant MBD2 (67). Since that time, several other
mechanisms have been suggested for active demethylation.
In plants, active demethylation uses specific DNA-glycosy-
lases that remove 5mC as a free base and initiate a base
excision repair (68). However in mammals, a homologous
5mC specific DNA glycosylase has yet to be identified.

Deamination of 5meC would generate G:T mismatch in
DNA duplex, and a subsequent G:T to G:C mismatch repair
is a suggested mechanism for active demethylation (69–74).

Nucleotide excision repair has been proposed as an alter-
native pathway for active DNA-demethylation. The key mol-
ecule in this mechanism is growth arrest and DNA-damage-
inducible protein 45 a (Gadd45a), a nuclear protein involved
in the maintenance of genomic stability, as well as DNA
repair and suppression of cell growth. Gadd45a over-expres-
sion activates methylation-silenced reporter plasmids and
promotes global DNA demethylation, while knockdown
silences gene expression and leads to DNA hypermethylation
(75). Targeted to rDNA, it triggers the demethylation of pro-
moter-proximal DNA by recruiting the nucleotide excision
repair machinery to remove methylated cytosines (76).
Another member of this family, Gadd45b, is required for
neuronal activity-induced DNA demethylation of specific
promoters and the expression of the corresponding genes
critical for adult neurogenesis, including brain-derived neu-
rotrophic factor (BDNF) and fibroblast growth factor-1
(FGF1) (77). However, the involvement of Gadd45-family
in active DNA-demethylation could not be substantiated (78)
and an expected hypermethylation in Gadd45a knockout
mice has not yet been found (79).

The detection of unexpected epigenetic modifications,
such as 5-hydroxymethyl-cytosine (hmC), proposes a new
understanding of gene regulation and DNA demethylation
(80). Genes of the ten-eleven translocation (TET) oncogene
family catalyze the conversion of 5mC to hmC in cultured
cells (81, 82). Being similar to a part of the thymidine iso-
orotate salvage pathway, hmC could easily be further
oxidized via aldehyde to carboxy-cytosine that is decarboxy-
lated to cytosine. Alternative mechanisms are associated with
DNMTs or base excision repair (2). hmC is present in the
genome of mouse embryonic stem cells and hmC levels
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decrease upon RNA interference-mediated depletion of TET1
(81). It must be emphasized that hmC is not recognized as
5mC by DNMT1. This suggests that 5-hydroxylation of 5mC
could also lead to passive demethylation during replication
(83).

By means of knockdown experiments, it was demonstrated
that Tet1 is involved in mouse embryonic stem cell mainte-
nance. This is achieved by maintaining the expression of
Nanog homeobox (Nanog), which correlates with its pro-
moter methylation (82). Regarding the involvement of genes
of the TET family in early reprogramming of the paternal
genome upon fertilization, it has been demonstrated that this
involves genome-wide oxidation of 5mC by Tet3 oxidase
(84). Enhanced DNA strand breaks have been found in the
paternal pronucleus which accumulates hmC, while the
maternal genome is protected by the Polycomb gene named
Developmental pluripotency-associated 3, Stella, PGC7
(Dppa3) (85). Knockdown experiments of the critical TET-
enzyme confirmed the crucial role of this process (82, 86).
Mutations, deletions and chromosomal rearrangements
involving the TET locus have been described in various
myeloid malignancies (80, 81). Thus, defects of the above-
mentioned mechanism may also contribute to the generation
of cancer and leukemia (stem) cells.

Elp3 (elongator complex protein 3) contains a histone ace-
tyltransferase-domain and a Radical SAM-domain that uses
SAM to catalyze a variety of radical reactions (87). Knock-
down of this gene by siRNA, or with similar results of Elp1
and Elp4, in oocytes before fertilization impaired paternal
DNA demethylation in the zygote. The need for the presence
of an intact Radical SAM-domain suggests an active deme-
thylation with the involvement of the tetrahydrofolate/folate
cycle (Figure 1), which uses SAM for active demethylation
of the 5-methylcytosines (86).

Methylated CpGs are distributed in chromatin

in a mosaic pattern

Most cytosines of DNA are methylated and distributed over
the whole genome as CpGs. Cytosine methylation was found
in phylogenetically distant plants and animals such as flow-
ering plants and algae, as well as in mammals and the hon-
eybee. Originally, non-CG methylations (CHG and CHH
where HsA, C or T) were only found in plants, but recently
such methylation patterns have also been found in animals
at a reduced level. In general, methylation is highest in zebra-
fish and mice and lowest in the honeybee, while plants have
intermediate methylation levels (88).

The vast majority of methylated CpGs is found in non-
coding highly repetitive DNA, comprising long interspersed
nuclear elements (LINEs), and small interspersed nuclear
elements (SINEs), the most abundant families accounting for
21% and 11%–13% of the genome fraction, respectively
(89).

Both contain transposable elements that are DNA sequenc-
es that have the ability to integrate into the genome at dif-
ferent sites when activated by demethylation. Thus, they

contribute to the genomic instability observed in cancer cells
(90, 91).

Mutated mice expressing only 10% of wild type DNMT1,
the enzyme responsible for the maintenance of DNA-
methylation, are runt-like at birth and develop T-cell lym-
phomas (61). Moreover, these mice show a reduced overall
methylation of a transposable endogenous retroviral element
(intracisternal A particle) that is activated and translocated
into genes (90). Genomic instability has also been reported
in patients that have mutations in the DNMT3B gene leading
to the immunodeficiency, centromeric region instability
facial anomalies (ICF) syndrome. This disease shows insta-
bility of the centromers of chromosomes 1, 9 and 16, which
is associated with abnormal hypomethylation of CpG sites
in the pericentromeric satellite regions (92). Similarly, in
Arabidopsis thaliana the role of DNA methylation in silenc-
ing transposable elements has been directly demonstrated. In
DNA methylation-deficient mutants many transposable ele-
ments are mobilized and de-repressed (93).

The methyl-CpG-binding protein 2 (MeCP2) is a multi-
functional protein, which interacts with promoter DNA,
either dependently (94, 95) or independently on methylated
CPGs (96). In addition to its activity as transcriptional
repressor, MeCP2 is also involved in chromatin compaction
and heterochromatin formation which is altered in Rett-syn-
drome (97).

Recently, increased genomic instability has also been
found in 5-methylcytosine binding protein 2 (Mecp2)-deplet-
ed mice (a murine Rett-syndrome model). The binding
domain of 5-methylcytosine binding proteins localizes these
highly methylated sequences into constitutive heterochro-
matin that is not transcribed (98). However, in mice, the
absence of DNA methylation of normally densely methylated
repetitive DNA sequences leaves heterochromatic foci visi-
ble by microscope, albeit with a somewhat altered compo-
sition (99).

Methylated CpGs also appear in the coding region of
genes (exons, gene-body methylation) and between genes
(intergenic regions) and are highly conserved, thus indicating
that they were already present in the last common ancestor
(20). In plants, where other types of methylation (mCHG and
mCHH, where HsA, C or T) exist, gene-body methylation
occurs exclusively at CG sites. While methylation in pro-
moters represses transcription (55, 100, 101), body-methyl-
ated genes are usually transcribed at moderate-to-high levels
(102). High gene-body methylation with low promoter meth-
ylation has also been found in an unbiased choice of highly-
expressed target genes in human B-lymphocytes, fibroblasts
and induced pluripotent stem cells (103, 104). The loss of
body methylation of such genes does not lead to increased
expression. In contrast, gene-body methylation shows rather
moderate up-regulation of transcription compared with body-
unmethylated genes (102, 103).

Using high definition profiling of mammalian DNA methy-
lation, dermal fibroblast cells were compared to an invasive
breast tumor cell line. Methylated CpGs were enriched in
exons compared with introns and the trend was quite pro-
nounced in the cancer cell line with higher overall methyl-
ation levels (105).
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As already found in plants, non-CG methylation (CHG
and CHH) has also been recently found in humans (106),
particularly in embryonic stem cells (107). This was sup-
ported by results from single base resolution analyses of
methylomes from human embryonic stem cells (108). In con-
trast to parallel analyzed fetal lung fibroblasts, which do not
show significant non-CG methylation, in H1 embryonic stem
cells almost 25% of all methylated cytosines comprise
mCHG and mCHH. Not surprisingly, treatment of embryonic
stem cells with BMP4 induced a loss of non-CG methylation
at several loci examined, whereas methylation in the CG con-
text was maintained. This indicates that the pervasive non-
CG methylation is lost upon differentiation. Moreover, when
fetal lung fibroblasts are induced to acquire stem cell char-
acteristics, the analysis of those loci revealed non-CG meth-
ylation, suggesting that non-CG methylation is characteristic
of stem cell state (108).

As already mentioned above, substantial gene body meth-
ylation is an evolutionarily conserved feature of eukaryotic
genomes. Interestingly, gene body methylation has been
found in plants and animals irrespective of phylogenetic dis-
tance. Although the function of gene body methylation
remains unknown, it has been proposed to suppress spurious
transcription from cryptic promoters that might otherwise
interfere with gene regulation (109).

Methylation status of CGIs in normal, aged

and tumor cells

As already mentioned, most CpGs are methylated and appear
in the heterochromatic fraction of the genome, whereas the
non-methylated CpG dinucleotides are arranged as CGIs in
dense clusters at the promoter of genes. However, the num-
ber of CGIs depends on the definition of a CGI, which has
changed during the last years. In the beginning, to predict a
CGI, an algorithm was used that was based on sequences
longer than 200 bp with a GC content higher than 50% and
a ratio of observed-to-expected CpGs of 0.6 (110). However,
this criterion resulted in a vast excess of false positive CGIs
(111). The increase in the minimum length over which the
base compositional (0.65) and CpG frequency (55%) criteria
must apply to 400–500 bp eliminates most false positives
and has become accepted as standard (112, 113). About 37%
of the CGIs are found in promoters of the genes and approx-
imately 70% of known genes have a CGI within -2000 bp
to q1000 bp distant to the transcription start sites (TSS) (91,
114).

Physiologically, most CGIs of genes remain unmethylated
throughout development, regardless of expression state but a
few are methylated during development; this correlates with
transcriptional silencing. A unique feature concerns the
X-chromosomes in females where CGI hypermethylation,
CGI hypomethylation and gene body methylation can be
observed. In mammals, during early embryogenesis of
females, one of the two active X-chromosomes must be tran-
scriptionally silenced to achieve dosage compensation com-
pared with XY-males. After randomly choosing one of the

two X-chromosomes, inactivation starts, spreads along the
chromosome and results in heritable repression of most genes
on the now inactivated X (115, 116). The inactivated X (Xi)
behaves like late-replicating chromatin and shows CGI
methylation that correlates with lack of gene expression as
demonstrated by hypoxanthine phosphoribosyl-transferase
(HPRT) (117). As expected, the HPRT on Xi is hyperme-
thylated at the 59 promoter region relative to the gene on the
activated chromosome (Xa). The middle region of this gene
on Xi, however, is consistently hypomethylated compared
with that on the Xa (118). These findings were later sup-
ported by an allele-specific analysis of more than 1000 loci
along the human X chromosome. The alleles on Xi were less
than half methylated than that on the Xa, where the meth-
ylation was found at multiple neighboring CpGs on the gene
bodies; before X-inactivation, both alleles were gene-body
hypermethylated (119). These findings agree with gene-body
methylation patterns found in plants and honey bees, indi-
cating phylogenetic conservation of this process (20, 120).
This may be involved in the regulation of gene expression
and/or splicing (121–123) as found for osteocalcin as a con-
sequence of treatment with a tyrosine kinase-targeting drug
in pro-myelocytic leukemia cells (124).

However, in cancers and leukemias, many CGI-associated
genes, especially tumor suppressor genes, are hypermethy-
lated – this means that more than 70% of the CpGs of CGIs
are methylated and inactivated. On the other hand, a global
demethylation process is also observed, resulting in a hypo-
methylated genome with a CpG methylation level lower than
30% (91, 125–128). Demethylation was observed in repeti-
tive elements (89, 129), including LINE-1 (130, 131), mod-
erately repetitive sequences such as human endogenous
pro-virus K (132), and centromeric sequences (133, 134).
Recently, the Alu-repeat containing SINEs (135) has been
found hypermethylated in tissue-dependent and differential-
ly-methylated regions of embryonic stem cells (136) and in
cancer-associated differentially-methylated regions (137). In
addition, there was increased transcription of SINE and
reverse transcriptase-associated LINE elements in hypoxia
(138) and in genomic regions which are involved in epige-
netic dysregulation of cancer-associated genes (137). The
activated transcription and transposition of those retroviral
and transposable elements may contribute to genomic insta-
bility and chromosomal rearrangements, and tumor progres-
sion (61, 90, 99, 132, 133, 139). However, as a consequence,
global hypomethylation also leads to decreased methylation
of genes, especially of their promoters. Examples include the
loss of imprinting of the IGF2 gene in colorectal cancer, the
gamma-globin gene in breast and colon adenocarcinomas,
MN, carbonic anhydrase IX (CA9) in renal cell carcinomas
and v-myc myelocytomatosis viral oncogene homolog (avi-
an) (MYC) in colorectal cancers and hepatocellular carcino-
mas (129). Recently, some gene families have been detected
as hypomethylated in diverse cancers. The B melanoma anti-
gen (BAGE) sequence family consists of at least 15 loci that
map to the juxtacentromeric (centromeric-adjacent) hetero-
chromatic regions of autosomes. Juxtacentromeric regions
are hypermethylated in normal cells and hypomethylated in
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tumors (127). Some of these genes are selectively transcribed
in the testis and were found hypomethylated and therefore
transcribed in a large number of tumors (140). Another gene
family that is hypomethylated and expressed in a large num-
ber of tumors is melanoma antigen family (MAGE). This
cancer/testis antigen family, which is physiologically only
expressed in testis, is distributed over the X-chromosome
(141–143). Interestingly, class I-part of this family is regu-
lated epigenetically by KIT, which is the cellular homolog
of the feline sarcoma viral oncogene, v-kit. Those genes are
hypomethylated and highly expressed in the human malig-
nant mast cell line (HMC1). They are down regulated by the
inhibition of the mutated and, therefore, constitutively acti-
vated KIT by the tyrosine-kinase inhibitor, Imatinib. Analysis
of the methylation status of their promoters indicates epi-
genetic control of aberrant gene expression in tumors by
tyrosine kinases (144).

Hypomethylation or mutation of one of two related cel-
lular oncogenes, c-Ha-ras, v-Ha-ras Harvey rat sarcoma viral
oncogene homolog (HRAS) or c-Ki-ras, v-Ki-ras2 Kirsten rat
sarcoma viral oncogene homolog (KRAS) in primary human
carcinomas results in decreased expression of lysyl oxidase
(LOX). This gene was first identified by its ability to revert
the Ras-transformed phenotype of tumor cell lines and was,
therefore, denominated as ras-recision gene (rrg). The protein
comprises two parts: when processed by bone morphogenetic
protein-1 (BMP1), the C-terminal peptide works as the oxi-
dizing enzyme while the N-terminal part functions as a
tumor-suppressor (145). It was demonstrated in human osteo-
sarcoma cell lines that Suramin, a drug with anti-cancer
activity, induces differentiation of these cells possibly by up-
regulation of LOX (146). Stable expression of the tumor-
suppressor part and, to a lesser extent, of the complete
protein can reverse the HRAS(ras)- and ERBB2 (Her-2/neu)-
transformed phenotype in mammary epithelial cells and sup-
press tumor formation (147). The tumor suppressor activity
of the LOX-propeptide was also demonstrated in lung and
pancreatic cancer cells (148). Recent research suggests that
reversal of the cellular tumor phenotype is mediated by the
whole pro-enzyme (145). Although the gene is often mutated
in lung and pancreatic cancer (148), hypermethylation of
CpGs in the LOX promoter also causes down-regulation of
its expression in many other tumors; oncogene-driven hyper-
methylation of CGIs of tumor suppressor genes is common
in cancers and leukemias. In human hepatocellular cancer
the hypomethylation rate of MYC and HRAS was found to
amount to 30% and 61%, respectively (149). In hepatocel-
lular cancer, promoter hypermethylation affects genes of the
cell cycle inhibitor CDKN2B (p15, p15INK4b, cyclin-
dependent kinase inhibitor 2B), CDKN2B (p16, P16INK4A,
cyclin-dependent kinase inhibitor 2A) and genes involved in
cell adhesion (CDH1, CDH13, CDH15 corresponding to
E-, H- and M-Cadherin), DNA repair and apoptosis and like
caspase-8 (CASP8, apoptosis-related cysteine peptidase)
(150). Hepatitis C virus (HCV) is a common cause of chronic
liver disease. A recent study evaluated the methylation status
of multiple tumor suppressor genes in aging liver, chronic
hepatitis and hepatocellular carcinoma. In this study, a group

of genes, including tumor suppressor genes, were defined
where methylation level was increasing with age. This group
of genes was even more methylated in aged tissue when
infected with HCV and in tumor tissue, even compared to
tissue infected with hepatitis B virus (HBV). Two further
groups of genes were identified whose methylation status
sequentially progresses with advancing stages of chronic
viral infection and tumor development (151).

A general change in methylation status has also been sug-
gested to be involved in the aging process as aging is one
of the highest risk factors for cancer. Similarly, during aging,
global hypomethylation of DNA (89, 152, 153), as well as
hypermethylation of promoters of tumor suppressor genes, is
found (151, 154–156). During replication, passive methyla-
tion by DNMTs preserves the methylation status of the DNA.
Failure during this operation, either for stochastic or for sys-
tematic reasons, may be responsible for global hypomethy-
lation (157) preferentially of heterochromatic DNA (5, 158,
159). Loss of methylation at those sites could induce genom-
ic instability. Changed expression or activity of DNMTs,
especially of the de novo methylases DNMT3B, could result
in aberrant methylation of specific promoters of (tumor-
suppressor promoter) genes (10, 156, 160–164).

CpG-islands, CpG-rich, CpG-poor regions

and CpG-shores

Since the discovery of CpG-clusters in gene-promoters and
their denomination as CGIs, the organization of the CGIs,
the density, the string and the search for their relevance in
the genome have attracted much attention. This interest has
increased with the finding that CGIs strings are involved in
the regulation of gene expression, and their possible meth-
ylation in development, age and tumor. Many algorithms
have been developed to predict the number of CGIs in the
genome and to correlate it with the number of putative genes;
such estimations have revealed that about 60% of genes are
associated with CGI, including all housekeeping genes and
half of the tissue-specific genes. It has been generally
assumed that CGI methylation should be developmentally-
dependent and/or tissue-specific and should correlate with
gene expression. Therefore, functionally-relevant changes in
DNA methylation should occur in CGIs localized either near,
or in the direct neighborhood, of gene-promoters. It has been
verified for 6%–8% of 17 000 genes that were stably
silenced by CGI-methylation during development (112).

However, a comprehensive colon cancer methylome anal-
ysis suggested the existence of CpG-shores, which are CpG-
rich regions about 2000 bp distant to CGIs and are
differentially methylated in tissues and tumors. Moreover,
their methylation status strongly correlates with gene expres-
sion and is tissue-specifically conserved in mice. It should
be emphasized that altered methylation in cancer occurs nei-
ther primarily in promoters nor in CGIs (13). The methyla-
tion status of those CpG-shores also distinguishes tissue- and
cancer-specific cells from artificially-induced human pluri-
potent stem cells (iPS), human embryonic stem cells (hESC)
and fibroblasts. iPS derived from fibroblasts differ in more



Functional aspects of CpG dinucleotides 397

Article in press - uncorrected proof

Figure 2 Schematic representation of the Tnfsf11 gene starting at -2000 to q1000 bp estimated from the transcription start site (TSS).
Analyzing the methylation status around the TSS (TATA-box) revealed that methylation of only one CpG (black triangle) abrogates the
expression of Tnfs11 in osteoblasts. This CpG was never methylated in the osteoblasts of BALB/c mice, but is methylated in other tissues
that do not express Tnfs11. The methylation status of CpG indicated by the gray triangle did not influence the expression of this gene in
osteoblasts and was found to be methylated in all tissues investigated (168). The results indicate that methylation of individual nucleotides
in CpG-rich regions at the TSS is critical for regulation of gene expression. The black line indicates the 59 non-coding region. The 59
untranslated region is indicated by the light gray box and the translated region of the first exon is indicated by the dark gray box. The start
of the light gray box is the TSS. The black line after the first exon indicates a part of the first intron. The CGI was calculated using the
MethPrimer software (172). The applied settings define a CGI when a DNA stretch of 200 bp (window size) has a GC-content )50% and
the observed-to-expected ratio of C/G )0.6 (110).

than 4400 regions, where about 2000 are localized within a
2 kb promoter region and have either been hyper- or hypo-
methylated. Interestingly, iPS and hESC have a very similar
methylome, although 71 regions are different and 51 show
hyper- and 20 hypomethylation. Global gene expression
studies have revealed a strong inverse correlation between
differential gene expression and methylation around 1 kb to
the transcription start. Differential DNA-methylation corre-
lated more significantly to transcriptional activity and was
associated with CpG-shores (12).

Variably-methylated regions around the TSS with a low
CpG ratio and distant to CGIs have been described as tran-
scription factor binding sites (165). Promoters that are poor
in CpGs compared with CGIs, led to their denomination as
CpG-poor promoters. To increase confusion, some promoters
with an increased number of CpGs compared with the sur-
rounding DNA-sequence were also labeled as CpG-rich,
although they would resemble CpG-poor promoters (5).

Using the term CpG-rich for areas around the transcription
start of a gene with dense accumulation of CpGs that do not
meet the stringent definition of a CGI (GC content 0.65, CpG
frequency 55% for 400–500 bp, see above) hypermethyla-
tion, as well as hypomethylation, will strictly correlate with
decreased or increased expression of a gene.

Collagen, type II, a 1 (COL2A1), which is associated with
a CGI, is expressed in nearly all chondrocytic cell types,
while collagen, type X, a 1 (COL10A1) that has only few
CpGs in its promoter, is only found in hypertrophic articular
chondrocytes in close vicinity to subchondral bone. As a
model system, adipocytic mesenchymal stem cells (MSC)
can be induced to differentiate into chondrocyte-like cells
expressing both genes. The CGI of COL2A1 was neither
methylated in uninduced nor in induced MSC, while two
CpGs of the promoter of COL10A1 changed their methyla-
tion status during differentiation (166). Again this result sug-
gests that predominantly non-island CpGs are involved in
cytosine-methylation-dependent regulation of expression.

In neuronal cells, the expression level of tyrosine hydroxy-
lase (TH) correlates with the overall methylation level of a
CpG-rich sequence. Treatment of non-expressing cells with
5-azacytidine, a DNMT-inhibitor, increases TH expression.
Interestingly, methylation of a single CpG in the first exon

of the gene correlates well with expression or silencing,
respectively. The sequence around this CpG is known for
binding the CpG binding protein and repressor of transcrip-
tion KAISO, thus explaining expression according to the
methylation status of this CpG (167).

A subpopulation of the mouse stromal cell line ST2 sup-
ports osteoclastogenesis by expressing tumor necrosis factor
ligand superfamily, member 11, RANKL (Tnfsf11), while
others do not. Mapping of the CpG methylation pattern has
revealed that one specific CpG locus was methylated; this
stromal subpopulation does not express this gene and does
not support osteoclastogenesis. This suggests that the meth-
ylation status of a single CpG, three bases upstream of the
TATA-box, controls Tnfsf11 expression (168). The structure
of this gene reveals a small CGI closely following the tran-
scription start and spans the first exon; the mentioned CpG,
however, is localized in a CpG-rich region (Figure 2).

FAS promoter hypermethylation is well known in malig-
nant cells and shows a complex pattern of CpG methylation.
Methylation of specific CpGs in promoter- and enhancer-
regions regulates its expression and its sensitivity to tumor
protein p53 (TP53) in colon carcinoma (169) or to nuclear
factor NF-kappa-B transcription factor family (170). In Seza-
ry syndrome, three CpGs are critical for FAS transcription
(171). Analysis of the of the human FAS promoter region
with a window size of 200 wMethPrimer program (172)x
clearly shows two CGIs, the first starts with the TSS, while
the other begins with the first exon and reaches into the first
intron (Figure 3A). However, increasing the stringency by
increasing the window size to 400 caused the first CGI to
disappear. In the now CGI-free but CpG-rich region, the crit-
ical CpGs are localized (Figure 3A). In contrast, the murine
FAS promoter shows no CGI, even when analyzed from
-2.000 to 1.000 flanking the TSS (Figure 3B) and also when
extended to -5.000 bp upstream; a CpG-rich region is solely
found at the TSS. This region is methylated ‘pathologically’
in Kras- transformed NIH3T3 mouse cells where it prevents
these cells from apoptosis (41) and is methylated ‘physio-
logically’ in MC3T3-E1 mouse osteoblasts, where CpG
demethylation is prevented by interaction with the extracel-
lular matrix guarding the cells from apoptosis by anoikis
(11).
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Figure 3 Schematic representation of the human FAS gene starting at -2000 to q1000 bp (A) and the mouse Fas gene from -2000 to
q1000 bp (B) estimated from the transcription start site (TSS).
Using the same settings as in Figure 2, two CGIs were found for the human (A) but not for the mouse gene (B). Increasing the window
size to 400 bp, the CGI of the human gene beginning with the TSS disappeared. In the area that disappeared, three CpGs are very important
for FAS transcription (A, black triangle). Methylation of two other CpGs is also involved in the regulation of FAS transcription (gray triangle)
(171). In the mouse Fas gene the methylation status of a 500 bp DNA stretch (B, black line above the CpGs) around the TSS correlates
with its expression. Two further regulatory CpG-rich regions for regulation of expression are not shown (11, 41). The results indicate that
methylation of individual nucleotides in CpG-rich regions at the TSS is critical for regulation of gene expression. The black line indicates
the 59 non-coding region. The 59 untranslated region is indicated by the light gray box and the translated region of the first exon is indicated
by the dark gray box. The start of the light gray box is the TSS. The black line after the first exon indicates a part of the first intron. The
CGI was calculated using the MethPrimer software (172). The applied settings define a CGI when a DNA stretch of 200 bp (window size)
or 400 bp has a GC-content )50% and the observed-to-expected ratio of C/G )0.6 (110).

As already highlighted, the N-terminal propeptide of LOX
functions as a tumor suppressor in humans and mice and is,
therefore, often inactivated in tumors by promoter CpG
methylation (145). Both genes have comparable methylomes
with CpG islands beginning around the TSS (Figure 4).
However, by increasing the observed-to-expected ratio of C/
G to )0.7, the CGI of the mouse Lox gene was shortened
and released at an area around the TSS. Detailed analysis of
the released CpG string around the TSS of the mouse Lox
promoter has revealed a CpG-rich region which is methyl-
ated by constitutively active Kras in a tumorigenic situation
(41), but also in non-tumorigenic cells when IL6 acts on
MC3T3-E1 mouse osteoblasts to methylate CpGs in the pro-
moter, blocking its expression and thus modulating collagen
cross-linking (10).

All these findings reveal CpG methylation-dependent gene
expression in CpG-rich regions of promoters of those genes
when also hidden by a CGI. Changes in methylation status,
often of a single, or of several, neighboring CpG, will pre-
vent, or force, the binding of transcriptional activators (169,
170), repressors or methyl-CpG-binding proteins regulating
gene transcription, or possibly splicing.

Single CpG-methylation seems to be physiologically reg-
ulated during differentiation or, possibly, somatically when
only the expression status of a gene must be changed.
Whether tumorigenic or other pathologic methylation pro-
cesses affect the methylation status of different CpGs is a
matter of future investigation; however, it is obvious that
detailed analysis of the methylation status of every single
CpG will be important in understanding epigenetic gene
regulation.

Concluding remarks

To date, following the history of CpG-methylation that began
with the discovery of CpG clusters in gene-promoters, CGIs
have been most attractive subjects for research, while single
CpGs in the 59-regulatory region of promoters have barely
been noticed. Only recently, with the characterization of
CGI-shores, CpG-poor or CpG-rich regions, single CpGs
have become more attractive. CGIs, when methylated, often
are subject to heterochromatization. As a consequence, the
corresponding genes turn inaccessible and transcriptionally
inactivated stably (119, 173, 174). Recent data, however,
suggest that CpG-rich regions are reversibly methylated dur-
ing cellular development and differentiation; single CpGs, or
only some neighboring ones, are frequently affected.

From the available information, we suggest two structural
elements with different functions: CGIs and less dense CpG
structures that resemble possible CpG-shores, CpG-rich or
CpG-poor regions. Methylation of CGIs could be important
for heterochromatization and could, therefore, contribute to
the silencing of extensive chromatin segments. The individ-
ual CpGs, however, are necessary for stable regulation of
genes which can also be transmitted to the daughter cells
during mitosis. Neither the density nor the number of CpGs
is critical as every CpG can be important. The location and
the methylation status of the CpGs in the promoter is essen-
tial. This status determines whether activators or repressors
bind to this promoter region and whether gene expression is
stimulated or attenuated.

The probable dynamics of this process is underlined by
the recent discovery of active demethylation of CpGs. Such
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Figure 4 Schematic representation of the human LOX (A) and the mouse Lox (B) gene from -2000 to q1000 bp estimated from the
transcription start site (TSS).
Both genes have a CGI. The CGI of the human LOX gene is methylated in some tumors and therefore not expressed (176). In the mouse
gene, a similar CGI was found (b). By increasing the observed-to-expected ratio of C/G to )0.7, the CGI of the mouse Lox gene was
shortened and released at an area around the TSS. Methylation of this part of the gene correlated with Lox expression (black line above the
CpGs) (10). Again, methylation of CpGs localized in a CpG-rich region around the TSS is critical for regulation of transcription. The black
line indicates the 59 non-coding region. The 59 untranslated region is indicated by the light gray box and the translated region of the first
exon is indicated by the dark gray box. The start of the light gray box is the TSS. The black line after the first exon indicates a part of the
first intron. The CGI was calculated using the MethPrimer software (172). The applied settings define a CGI when a DNA stretch of 200
bp (window size) or 400 bp has a GC-content )50% and the observed-to-expected ratio of C/G )0.6 (110).

considerations support new concepts for biomolecular anal-
ysis of methylated CpGs at the single cytosine level. Such
analyses will reveal differences in DNA methylation in
‘physiologic’ processes during development and differentia-
tion and in ‘pathologic’ situations in cancer, as well as in
other chronic diseases which affect CpG-rich regions embed-
ded in CGIs. This implicates the rising relevance of the anal-
ysis of the methylation apparatus. The specificity of
DNMT-isoforms and their accessory proteins for CpG-
containing sequences will gain much more interest. Only
then will it be possible to understand the methylation process
and the complex action of epigenetic drugs (175). The devel-
opment and improvement of drugs specifically influencing
the methylation process will help to modulate physiologic
development and to prevent pathologic processes in
organisms.
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