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Abstract

Corticotropin-releasing factor (CRF) and the urocortins
(UCN1, UCN2, and UCN3) belong to the CRF family of
peptides and are the major regulators of the adaptive
response to internal and external stresses. The actions of CRF
and UCNs are mediated through two receptor subtypes: CRF
receptor 1 (CRFR1) and CRFR2. Their physiological roles,
among other functions, include the regulation of food intake
and anxiety-like behavior. In this review, we describe the
progress that has been made towards understanding how
anxiety- and depression-like behavior and food intake are
regulated by CRF, UCN1, UCN2, and UCN3.
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Introduction

Corticotropin-releasing factor (CRF) is a 41-amino acid pep-
tide that was isolated from the ovine hypothalamus and struc-
turally characterized in 1981 (1). CRF is widely expressed
in the brain and in peripheral tissues of several species (2–4).
In the mammalian brain, CRF is highly expressed in the
hypothalamus. Recently, several additional members of the
CRF family have been identified: urocortin1 (UCN1) (5),
UCN2 (6), and UCN3 (7). CRF and UCNs signal through
two receptor subtypes: CRF receptor 1 (CRFR1) and CRFR2
(2) (Figure 1). Rat/human CRF binds with high affinity to
CRFR1 and with a lower affinity to CRFR2 (3).

The UCN1 gene was cloned from the rat midbrain in 1995,
encoding a 40-amino acid peptide (5). In the mammalian
brain, UCN1 mRNA is highly expressed in the Edinger-
Westphal nucleus (8). In addition, validated sites of brain
UCN1 synthesis include the lateral superior olive, the
supraoptic nucleus, the lateral hypothalamic area, and, cau-
dally, several brainstem and spinal cord motoneuron nuclei
(8). In the periphery, UCN1 expression has been observed in

adipose tissue (9); the heart (10–12); immune system (4, 13),
including the spleen and thymus; the testes; the kidneys (14);
the adrenal gland (15); and the skin (16, 17). UCN1 is also
present in the enteric nervous system of the duodenum, small
intestine, and colon (8, 18). UCN1 binds both CRFR1 and
CRFR2 with higher affinities than CRF (19).

The mouse UCN2 gene, discovered in 2001, encodes a
38-amino acid peptide (6). Similar to UCN1, UCN2 mRNA
is localized in the supraoptic nucleus and magnocellular sub-
division of the paraventricular nucleus. Unlike UCN1, UCN2
also has marked expression in the arcuate nucleus of the
hypothalamus (6). A survey of peripheral rodent tissue for
UCN2 gene expression revealed high levels in the skeletal
muscles and skin, moderate levels in the lungs, stomach,
adrenal glands, ovaries, brown fat, spleen and thymus, and
lower or negligible levels in the testes, kidneys, liver, pan-
creas, white fat, intestine, heart, and aorta (20, 21). In con-
trast to UCN1, UCN2 binds CRFR1 with low affinity (6),
but unlike CRF, UCN2 binds with high affinity to CRFR2
(5, 6).

The UCN3 gene was also identified in the mouse genome
in 2001 (7). Mouse UCN3 mRNA has been found in the
brain, including the hypothalamus, amygdala, and brainstem
(7). UCN3 gene expression has also been detected in adipose
tissue, the heart, skin, thyroid, adrenal glands, b cells of the
pancreas, spleen, ovary, placenta, fetal membranes, kidneys,
stomach, small intestine, colon, and rectum (22). UCN3
selectively binds CRFR2 (7). In contrast to UCN1, UCN3
binds to CRFR1 only with very low affinity (5, 7).

In recent years, CRF and UCNs have been studied exten-
sively. In this review, we describe the progress that has been
made towards understanding how anxiety- and depression-
like behavior and food intake are regulated by CRF, UCN1,
UCN2, and UCN3.

Effects of CRF family peptides on anxiety-like

behavior

CRF

CRF is the key central nervous system mediator of adapta-
tion to stress (23). Intracerebroventricular (ICV) administra-
tion of CRF induces anxiety- and depression-like behavior
in rats or mice (24–27) and can reproduce some features of
irritable bowel syndrome, a stress-related disease, such as
diarrhea (28). By contrast, ICV administration of a CRF
antagonist has anxiolytic- and antidepressant-like effects (29)
and blocks the inhibition of gastric motor function that is
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Figure 1 CRF family peptides and CRF receptors.

induced by various stressors (30). Interestingly, pretreatment
with gonadotropin-releasing hormone (GnRH) agonists
antagonizes CRF-induced anxiety- and depression-like
behavior, indicating that GnRH negatively modulates CRF-
induced behavioral effects (29). Recently, it was reported that
chronic stress increases CRF production in the raphe nucleus
associated with decreased serotonin neurotransmission,
depression, and anxiety (31). By contrast, steroids increase
serotonin effects in the brain by acting through the CRF sys-
tem, which include decreased CRF transport to serotonin
neurons and decreased CRFR1 expression, in conjunction
with an increase in UCN1 transported caudally and an
increase in CRFR2 and CRF-binding protein expression. As
a result, the increase in serotonin action elevates mood,
increases stress resistance, and decreases anxiety (32). Never-
theless, CRF-deficient mice display normal behavioral
responses to stressors (33). This indicates the existence of
developmental rescuing/compensation mechanisms other
than the CRF system.

UCN1

Central UCN1 administration induces many neurochemical
and behavioral changes. These include behavioral arousal
properties in familiar environments and proconvulsant and
anxiety-like effects. The anxiety-like properties of central
UCN1 administration, mediated at least partly by CRFR1
receptors, have been shown in several conditions, including
the open field, the plus maze, light/dark box, defensive with-
drawal, and social interaction tests (34–40). The endogenous
anxiety-related roles of UCN1 remain uncertain, since Wang
et al. reported that UCN1-deficient mice exhibit normal anx-
iety-like behavior and autonomic responses to stress (41),
whereas another UCN1-deficient mouse model showed
increased anxiety-like behavior in the plus maze and open
field tests (42). The endogenous anxiety-related roles of
UCN1 also remain unclear.

UCN2

Unlike CRFR1 agonists, UCN2 does not induce malaise,
arousal, or anxiety-like effects at the minimum central doses

needed to reduce food intake in rats (6, 24, 43–48) and even
opposes the anxiety-like effects of CRF in the open field test
(48, 49). However, UCN2 can induce delayed anxiolytic-like
effects under high-baseline anxiety conditions in the plus
maze (48). Furthermore, ICV administration of high doses
of UCN2 to mice increases anxiety-like behavior in the plus
maze, as well as acoustic startle responses (50, 51). These
results suggest that the effects of exogenous UCN2 on anx-
iety-like behavior are dependent on the dose of UCN2.
UCN2-deficient mice do not exhibit altered anxiety-like
behavior in the plus maze, light/dark box, or conditioned fear
tests (52). However, UCN1 and UCN2 double-deficient mice
show a robust anxiolytic phenotype and modified serotoner-
gic activity in anxiety circuits (53). Moreover, female mice
lacking UCN2 exhibit a significant increase in the basal daily
rhythms of ACTH and corticosterone and a significant
decrease in depression-like behavior (52).

UCN3

UCN3 does not increase anxiety-like behavior in the open
field, the plus maze, light/dark box, social interaction, or
defensive burying tests, under conditions in which CRFR1
agonists produce anxiety-like changes (49, 54). In fact, ICV
administration of UCN3 produces acute anxiolytic-like
changes during the plus maze and light/dark box tests (49,
54). Comprehensive behavioral phenotyping of UCN3-defi-
cient mice did not show any alterations in measures of
anxiety- or depression-related behaviors (55).

Effects of CRF family peptides on the regulation

of food intake

CRF

In both light and dark phases, intraperitoneal (IP) adminis-
tration of CRF suppresses food intake in mice. Food intake
and body weight gain are inhibited by long-term administra-
tion (43, 56, 57). The feeding-inhibitory action of IP admin-
istered CRF is similar to that of UCN2: more potent than
UCN3 but weaker than UCN1 (57). Most previous studies
on the action of CRF on feeding behavior have demonstrated
that CRF inhibits food intake when administered ICV to fast-
ing rats or mice (6, 58–61). The feeding-inhibitory action of
ICV administered CRF is more potent than that of UCN2 or
UCN3, but it is weaker than that of UCN1 (61). Effective
ICV doses are lower than effective IP doses (57, 61). Wild-
type and CRF-deficient mice show similar intake of food
pellets and sweetened milk (60).

UCN1

Among the CRF family peptides, UCN1 has the most potent
and prolonged inhibitory effect on decreasing food intake
and body weight gain, when administered peripherally (56,
57, 62–64). Repeated administration of UCN1 also signifi-
cantly lowers blood glucose and decreases visceral fat weight
in obese mice that are fed on a high-fat diet (57). Centrally
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Table 1 Effects of CRF family peptide deficiencies on feeding and
anxiety-like behaviors in knockout mice.

Phenotype of deficient mice

CRF-/- UCN1-/- UCN2-/- UCN3-/-

Food intake – – – ?
Anxiety-like behavior – – ≠ – –

≠, Stimulation of food intake or anxiety-like behaviors; –, no
effects on food intake or anxiety-like behaviors; ?, not reported.

Table 2 Ranking order of potency for feeding inhibition after
peripheral or central administration.

IP UCN1)CRF, UCN2)UCN3
ICV UCN1)CRF)UCN2, UCN3

IP, Intraperitoneal administration; ICV, intracerebroventricular
administration.

administered UCN1 reduces food intake in rats or mice (43,
61, 65). The feeding-inhibitory action of ICV administered
UCN1 is the most potent of the CRF family peptides (61).
UCN1 infused into the fourth ventricle reduces intraoral
sucrose solution intake, even in chronically maintained dece-
rebrate rats, supporting a hindbrain-based mechanism of ano-
rectic action for brainstem UCN1 (66). Nevertheless,
UCN1-deficient mice have normal basal feeding behavior
(42). This suggests the existence of compensatory mecha-
nisms in deficient mice.

UCN2

In both light and dark phases, IP administration of UCN2
suppresses food intake in mice. Food intake and body weight
gain are inhibited by long-term UCN2 administration (57).
The feeding-inhibitory action of IP administered UCN2 is
more potent than that of UCN3, but it is weaker than that of
UCN1 and similar to that of CRF (57). Central administra-
tion of UCN2 produces satiation-like changes in meal struc-
ture, with food intake reduced at UCN2 doses that do not
induce signs of malaise (6, 22, 44–46, 61, 67, 68). The feed-
ing-inhibitory action of ICV administered UCN2 is weaker
than that of UCN1 or CRF but similar to that of UCN3 (61).
Previous studies have shown that gastric vagal afferent activ-
ity is increased by peripheral administration of UCN2 (69).
The effect of UCN2 on the afferent activity of the gastric
vagal nerve is similar to that of anorexigenic peptides CCK
and peptide YY (PYY), and contrary to that of orexigenic
peptide ghrelin (70, 71). In addition, CRFR2 binding sites
have been characterized on vagal afferent fibers (72). UCN2-
deficient mice exhibit normal spontaneous food intake (42,
52). By contrast, UCN2 deficiency blunts the anorectic
effects of fenfluramine, suggesting that UCN2 has a down-
stream role in satiating effects of serotonin (52).

UCN3

Only a few studies have assessed food intake alterations
induced by UCN3. In both light and dark phases, IP admin-

istration of UCN3 suppresses food intake in mice. Food
intake and body weight gain are inhibited by long-term
UCN3 administration (57, 64, 73). The feeding-inhibitory
action of IP administered UCN3 is the weakest of the CRF
family peptides (57). ICV administration of UCN3 decreases
food intake in high-fat diet-fed obese mice, as well as in lean
mice. The feeding-inhibitory action of ICV administered
UCN3 is weaker than that of UCN1 or CRF and similar to
that of UCN2 (61).

Perspective

Over the past decade, studies on the CRF family of peptides
have revealed their close relation to physiological regulation
of anxiety and feeding (Tables 1 and 2). The development
of agonists and antagonists of their target receptors will con-
tribute to a better understanding of the role of CRF-like sig-
naling in various pathological states. Recent studies have
shown that CRFR1 antagonists including antalarmin and CP-
154526 decrease anxiety- and depression-like behaviors (4)
and CRFR2 antagonists including antisauvagine-30 attenuate
stress-induced anorexia (74, 75). CRF family peptides and
CRFRs are therefore promising targets for the treatment of
obesity, diabetes, anxiety, and depression.
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