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Abstract

Deleterious or ‘disease-associated’ mutations are mutations
that lead to disease with high phenotype penetrance: they are
inherited in a simple Mendelian manner, or, in the case of
cancer, accumulate in somatic cells leading directly to dis-
ease. However, in some cases, the amino acid that is substi-
tuted resulting in disease is the wild-type native residue in
the functionally equivalent protein in another species. Such
examples are known as ‘compensated pathogenic deviations’
(CPDs) because, somewhere in the second species, there
must be compensatory mutations that allow the protein to
function normally despite having a residue which would
cause disease in the first species. Depending on the nature
of the mutations, compensation can occur in the same pro-
tein, or in a different protein with which it interacts. In prin-
ciple, compensation can be achieved by a single mutation
(most probably structurally close to the CPD), or by the
cumulative effect of several mutations. Although it is clear
that these effects occur in proteins, compensatory mutations
are also important in RNA potentially having an impact on
disease. As a much simpler molecule, RNA provides an
interesting model for understanding mechanisms of compen-
satory effects, both by looking at naturally occurring RNA
molecules and as a means of computational simulation. This
review surveys the rather limited literature that has explored
these effects. Understanding the nature of CPDs is important
in understanding traversal along fitness landscape valleys in
evolution. It could also have applications in treating diseases
that result from such mutations.
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Introduction

It has frequently been observed that, when deleterious single
amino acid mutations are surveyed, mutated amino acid
types with detrimental effects in one species are found as the
native wild-type residue in homologous proteins of other
species, with neutral effect on the fitness of the latter species.
The most likely scenario explaining such observations is that
the two homologous proteins provide slightly different struc-

tural environments for the same residue, thus compensating
for the deleterious effect of the residue in the first protein.
Generally researchers have looked at cases of human disease-
causing ‘deleterious’ or ‘disease-associated’ mutations (DAMs)
and observed that the mutant (disease-causing) amino acid
is the native (wild-type) amino acid in another species. Such
cases are known as ‘compensated pathogenic deviations’
(CPDs).

Figure 1 shows an example of two DAMs in human anti-
thrombin III (ANT3), one of which is compensated and the
other uncompensated. In the human protein, the mutations
Ala416™Pro and Ala416™Ser both cause susceptibility to
thrombophilia as a result of antithrombin III deficiency.
Details of these mutations can be seen at Online Mendelian
Inheritance in Man (OMIM) Entries 107300.0007 and
107300.0027 (http://www.ncbi.nlm.nih.gov/omim/107300).
Although OMIM states that the mutation occurs at residue
384, this equates to residue 416 in the UniProtKB/SwissProt
sequence (UniProtKB/SwissProt accession P01008). Our
online resource at http://www.bioinf.org.uk/omim/ provides
a validated mapping of residue numbers in OMIM to
UniProtKB/SwissProt residue numbers. As the alignment
shows, this residue is a conserved alanine in all the sequenc-
es examined – neither proline nor serine is seen in any other
species and the two disease-causing mutations seen in
humans are therefore classified as ‘pathogenic deviations’
(PDs, see below). However, a mutation of Ala419™Val (as
described in OMIM Entry 107300.0042, OMIM residue
number 387), which also leads to antithrombin III deficiency,
occurs at a residue which is not conserved in the alignment.
In fact, sheep and cows have a valine at this position in the
native sequence and thus the Ala419™Val mutation in
humans is classified as a CPD.

The question, therefore, is how do the sheep and bovine
proteins function properly with a valine at position 419? Pre-
sumably, during the evolution of human, sheep and bovine
ANT3 proteins from a common ancestor, some other amino
acid difference(s) have occurred in the sheep and bovine pro-
teins compared with the human protein that somehow com-
pensate for what, in the human protein, is the negative effect
of having a valine at position 419. How the compensation is
achieved in this example is not clear.

Compensation of mutations is also important at the RNA
level. Stable Watson-Crick base pairing in RNA can bring
together remote parts of the molecule to form stable three-
dimensional structures of functional importance. Thus, muta-
tions in the RNA must undergo compensatory events to
maintain the necessary base pairing requiring the crossing of
valleys on the fitness landscape. Not only has this been stud-
ied using real RNA sequences (1), but RNA has also been
used in computational models designed to understand
compensatory mutation (2, 3).
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Figure 1 Examples of two disease-associated mutations (DAMs) reproduced from our structural analysis (10). The Figure shows the
alignment of the human antithrombin III (ANT3) protein sequence with non-human functionally equivalent homologous proteins. Highlighted
are columns 416 and 419 which represent an uncompensated pathogenic deviation (PD) and a compensated pathogenic deviation (CPD),
respectively.

Figure 2 Hierarchy of SNPs, mutations, and their effects. SNPs
(defined in the general sense to mean any single base DNA muta-
tion) can be non-coding (ncSNPs) or coding (cSNPs). cSNPs can
be synonymous (sSNPs), nonsense (nSNPs), or non-synonymous
(nsSNPs). nsSNPs result in a single amino acid polymorphism
(SAAP) at the protein level. These can be phenotypically silent
(sSAAP), low-penetrance (lpSAAP), or high-penetrance deleterious
mutations (DMs) also known as disease-associated mutations
(DAMs). A DAM can be compensated in another species (a com-
pensated pathogenic deviation, CPD) or uncompensated (a patho-
genic deviation, PD). Note that all forms of SNPs can have effects
on expression as they can affect regulatory regions or splice sites.
Note also that lpSAAPs form a continuum between phenotypically
silent and high-penetrance disease-associated mutations.

Body of review

The term ‘compensated mutations’ was introduced by Kimu-
ra (4), who demonstrated that two mutually compensatory
mutations could become fixed in a population as a result of
random genetic drift. Kimura defined ‘compensatory neutral
mutations’ as linked deleterious mutations; in other words,
two mutations each of which, by itself, has a deleterious
effect, but together have a neutral (or potentially even a ben-
eficial) effect on overall fitness. The ability of one mutation
to compensate for the pathogenic effects of another newly
introduced mutation is an important mechanism in evolution.
Using the same analogy used by Wright (5) and used exten-
sively by Dawkins (6), the fitness landscape can be viewed
as mountains of high fitness separated by valleys of low
fitness. Thus, compensation of mutations allows bridging the
valleys of low fitness.

Terminology

Because the analysis and understanding of CPDs crosses the
boundaries of structural and evolutionary biology, it is useful
to define several terms that are used in the field before we
go into any more discussion.

‘Single nucleotide polymorphisms’ (SNPs) are single
DNA base changes. Strictly the term is applied only to
instances where the mutation is observed in at least 1% of a
‘normal’ population. In other words, they will either have a
completely neutral phenotype or a low-penetrance phenotype
where there is no clear Mendelian inheritance. Such SNPs
can be involved in more complex conditions such as heart
disease or simply give a propensity towards disease through
interaction with external factors. However, it should be noted
that many researchers use the term SNP to refer to any single
base change, even when no frequency data are available. In
our previous study looking at the effects of mutation on pro-
tein structure (7), we tried to use the term SNP in the correct
way (with the assumption that they do not lead to high-pen-
etrance Mendelian inherited disease) and contrasted these
with mutations that do lead to disease. However, even dbSNP
(8), the primary repository for SNP data at the National
Center for Biotechnology Information (NCBI), includes data
on lower frequency mutations.

SNPs can occur in coding or non-coding regions of DNA.
Both coding (cSNPs) and non-coding SNPs (ncSNPs) can

have effects on gene expression or mRNA splicing; cSNPs
can (i) be synonymous in terms of the resultant amino acid
(sSNP), (ii) lead to a premature stop or ‘nonsense’ codon
(nSNP), or (iii) be non-synonymous (an nsSNP) resulting in
a single amino acid change (Figure 2).

‘Single amino acid polymorphisms’ (SAAPs) are single
amino acid mutations resulting from nsSNPs. We use the
term as defined by Hurst et al. (7) to apply both to mutations
resulting from strictly defined nsSNPs (i.e., those that occur
in at least 1% of a normal population) and to deleterious
mutations (DAMs) as defined below (Figure 2).
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‘Deleterious mutations’ also referred to as DAMs (9) are
SAAPs that result in high-penetrance disease phenotypes. In
this review, we use the term to encompass both PDs and
CPDs as defined below (Figure 2).

‘Pathogenic deviation’ (PD) is often used as a synonym
for DAM, but in the discussion of CPDs (see below), we
generally refer to PDs as disease-causing mutations that are
not observed to be compensated in any other species and that
is the definition we use throughout this review. As discussed
by Barešić et al. (10), this definition of PDs is not completely
reliable because it is based on a negative observation. Muta-
tions are classified as PDs rather than CPDs simply because
the residue is not observed as the native residue in any other
species, but until we have the sequence of every species, we
cannot conclusively know that it is not compensated in at
least one other species. See Figure 2 and column 416 in
Figure 1 for an example of a PD.

‘Compensated pathogenic deviations’ (CPDs) have also
been referred to as ‘potential compensated mutations’ (9).
Their existence was first discussed by Kimura (4), who
termed them ‘compensatory neutral mutations’, whereas the
term CPD was first defined by Kondrashov et al. (11). A
CPD is a SAAP (as defined above) associated with a disease
phenotype (i.e., a DAM), usually in a human protein, where
the mutated amino acid type is found as the native (pheno-
typically neutral) residue at the same position in an ortholog
of another species. See Figure 2 and column 419 in Figure
1 for an example of a CPD.

‘Functionally equivalent proteins’ (FEPs) are orthologs
which have maintained the same function during evolution,
as discussed by McMillan and Martin (12). Homologous
genes (or proteins) have descended from a common ancestor,
while orthologs are the subset of homologs that arise from
speciation events (13). However, if two species have
diverged sufficiently, the function of one of the pair of ortho-
logous proteins could diverge. For example, Shibata et al.
(14) showed that although the general function of exportin-
5 proteins (nuclear export of miRNAs and tRNAs) is con-
served across different species, substrate specificity varies.

‘Co-evolution’: at the molecular level, evolution of each
protein molecule is affected by (potentially numerous) inter-
action partners and environmental factors. When a similar
evolutionary pattern is detected for the two molecules, they
are said to be co-evolving. This shared evolutionary history
can be a consequence of their co-adaptation, shared cellular
pathway or localization, or a shared expression pattern (15).
In examining CPDs, we are only interested in the first of
these – the co-adaptation of two amino acids which affect
each other’s evolutionary paths.

‘Epistasis’ is defined as the effects of one gene being mod-
ified by one (or several) other genes (sometimes termed
‘modifier genes’). Typically the phenotype of one gene (the
‘epistatic’ gene) is expressed, whereas the other (the ‘hypo-
static’ gene) is altered or suppressed. This interaction of dif-
ferent genetic loci contrasts with normal Mendelian effects,
where one allele is ‘dominant’ over another ‘recessive’ allele
at the same locus. In a more general way, epistasis is defined
as an interdependence between two gene loci as discussed

by Cordell (16). In the context of population genetics, ‘epis-
tasis’ refers to the interaction between alleles at different loci
in such a way that the effect on the individual cannot be
predicted from merely adding up effects of interacting loci.
In the case of CPDs we are interested in the change of fitness
of a protein caused by a change of a single amino acid.
Fitness can be modified by differences (i.e., amino acid
changes) at other locations. Although the term ‘epistasis’
should strictly be applied only to changes in other proteins,
when discussing CPDs it is further generalized to refer to
changes at other locations within the same protein.

‘Sign epistasis’ also known as fitness reversal, refers to
the situation in which there is a deleterious mutation which
co-evolves with a mutation having an epistatic effect that
more than compensates for the deleterious effects of the oth-
er mutation. Thus, the overall fitness change becomes posi-
tive (or at least neutral) rather than negative. Sign epistasis
facilitates sampling protein space for novel amino acid com-
binations and provides a mechanism of escape from local
fitness minima (2). In some cases ‘fitness reversal’ can be
used as a more general term (perhaps influenced by epige-
netic effects), whereas sign epistasis specifically refers to the
effect of compensatory mutations. In this review, we use the
terms interchangeably.

RNA as a model of compensation

Although it is clear that protein and RNA are very different
molecules, the simple nature of RNA models has, in general,
been widely applied to study evolution. Understanding the
importance of compensatory events during evolution is no
exception. RNA consists of just four nucleotides: adenine
(A), guanine (G), cytosine (C) and uracil (U). Just as in
DNA, stable Watson-Crick pairing can occur between A and
U, and between G and C. This can bring relatively remote
parts of the molecule together to form stable three-dimen-
sional structures composed of features such as ‘stems’ (hel-
ical base-paired regions) and unpaired regions which form
‘loops’ (at the end of a stem) or ‘bulges’ (in the middle
of a stem). One can view the RNA sequence as being a
‘genotype’, whereas the manifestation of a stable folded
structure is the ‘phenotype’. The simple nature of RNA fold-
ing means that it can be simulated in a computer with a high
degree of accuracy using freely available software wsee, e.g.,
Zuker’s MFold software (17, 18) and Schuster’s ViennaRNA
(19)x. More recent software can even predict the shapes of
RNA molecules during interactions with other molecules
we.g., the work of the Hofacker group (20) and of the
Mathews group (21, 22)x.

Computational models of RNA evolution typically simu-
late a large population of RNA molecules and apply the stan-
dard strategy of random mutation followed by natural
selection. On the basis that most functional RNA molecules
have shapes that are extremely conserved throughout evo-
lution, because shape has a dominant role in determining
function (23), the fitness of an RNA molecule is determined
by predicting its shape and then applying a fitness function
based on similarity to some predetermined ideal target shape.
Having evaluated the fitness, molecules are allowed to rep-
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licate in proportion to their fitness and, during the replica-
tion, random mutations are allowed to occur.

The application of RNA models to understanding evolu-
tion is reviewed by Cowperthwaite and Meyers (3) and, in
an earlier paper, Cowperthwaite et al. (2) used these models
to examine fitness reversal. They observed that RNA muta-
tions that can be regarded as ‘pathogenic’ in the model sys-
tem accumulate more rapidly than expected based on their
effect on overall population fitness. Furthermore, they
observed that the drop in fitness was not as severe as would
be expected based on the accumulation of deleterious vari-
ations. Because deleterious effects were not additive, com-
pensatory events were clearly occurring. Indeed, mutations
that initially were deleterious accumulated at nearly the same
rate as mutations that were immediately beneficial and fix-
ations of more than half of the initially deleterious mutations
led to fitness reversals. The fixation of initially deleterious
mutations led to a substantial positive effect on the total fit-
ness of the genome. When other mutational events such as
‘hitchhiking’ and random drift were considered, their model
showed that some 80% of PDs were fixed through fitness
reversal or co-adaptation with a compensatory mutation.

In a related study, but using real sequences rather than
computer simulations, Meer et al. (1) attempted to address
the question of whether valleys on the fitness landscape (cor-
responding to low-fitness genotypes) can be crossed to reach
isolated fitness peaks. In particular, they examined the switch
between AU and GC Watson-Crick nucleotide pairs at equiv-
alent sites in the mitochondrial tRNA stem regions in 83
mammalian species. Clearly, to switch from an AU pair to a
GC pair either needs A™G and U™C mutations to occur
simultaneously (thus jumping from one fitness peak to anoth-
er – an unlikely event), or requires one mutation to occur
before the other thus passing through a valley of low fitness
where there will be a Watson-Crick mismatch. Because of
the need to traverse low-fitness valleys, they found that these
‘Watson-Crick switches’ occurred 30–40 times more slowly
than did pairs of neutral substitutions (where base pairing
was not a factor). However, they found that substitutions
leading to a Watson-Crick switch were strongly correlated.
They were able to estimate the depths of the fitness valleys
and showed that AC intermediates are slightly more delete-
rious than GU intermediates. Nevertheless, the compensatory
evolutionary events that do occur must proceed via rare dis-
favored intermediate variants that never become fixed in the
population.

Analysis of compensatory events in proteins

As discussed above, computer simulations in RNA and stud-
ies of RNA molecules have shown that compensatory events
do indeed allow traversal of valleys in the fitness landscape.
RNA, having only four nucleotides is clearly a much simpler
system than proteins composed of 20 amino acids, but we
know that compensatory events must also occur in proteins.
It is difficult to say whether the fact that there are 20 amino
acids with a wide variety of chemical and physical properties
makes it harder or easier to compensate in proteins than in
RNA. On the one hand, the subtlety and complexity of inter-

actions made by amino acids could mean that compensatory
events are difficult; on the other hand, a change that is dam-
aging might be somewhat small in nature and therefore only
need a small compensatory event, perhaps by a conservative
substitution in a nearby amino acid. The compensating event
might (if it happens first) not have a particularly negative
effect.

Over the past decade, several groups have started to look
at CPDs in proteins, but although the definition of a CPD is
the same, different approaches have been taken to gathering
CPD data.

CPDs are identified by (i) identifying missense mutations
that lead to disease (generally in humans), (ii) identifying a
set of homologous proteins, (iii) performing a multiple align-
ment of the human sequences with the homologous sequenc-
es, and (iv) identifying cases where the pathogenic mutation
is observed as the native residue in at least one other species.
Thus, not surprisingly, datasets of CPDs are highly depend-
ent on (i) the alignment building method, (ii) the thresholds
used to detect homologous proteins, and (iii) the choice of
species to be tested for homologs. Several methods are sum-
marized in Table 1 showing a variety of species, cut-off
values for identifying homologies to be included in the data-
set, and multiple sequence alignment methods. In particular,
Poon et al. approach (24) was rather different from the
others. They analyzed deleterious missense mutations from
a range of proteins in different species. Rather than use a
sequence-comparison approach as used in the other datasets,
they analyzed data from publications identified using rele-
vant keyword searches. Thus, their data show a very high
fraction of deleterious mutations that are compensated
because their analysis focused only on these mutations. In
addition, they considered mutations introduced with muta-
genesis-inducing agents as well as evolutionary events.

Once the data have been collected, some authors per-
formed various analyses to compare and contrast compen-
sated mutations with the rest of the dataset to try to
understand whether the nature of mutations that are seen to
be compensated (CPDs) is different from those that are not
seen to be compensated (PDs). As described in the defini-
tions above, although we use the term PDs strictly to refer
to uncompensated mutations, the identification of a clear
uncompensated set is not completely rigorous as it is based
on a negative observation. Thus, the fact that no compen-
satory event has been observed could simply be because a
species that has a compensatory event has not yet been
sequenced. Similarly, sequence quality is always a concern
(25) and it is possible that apparent CPDs are actually a result
of sequencing errors.

Excluding the Poon dataset which is deliberately biased
towards compensated mutations, Table 1 shows that the frac-
tion of disease-causing mutations that are seen to be com-
pensated varies from 0.14% in the Zhang dataset (62/44348)
to 19.5% in the Barešić dataset (453/2328): our contribution
to this field. This clearly shows that the number of compen-
satory events is correlated with the evolutionary distance
between the species considered. In the Zhang dataset, only
humans, chimpanzees, and neanderthals were examined,
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Table 1 Datasets of compensated pathogenic deviations described in the literature.

Dataset Species Identity cut-off value Alignment method Human proteins � DAMs � CPDs

Kondrashov et al. (11) Any mammalsa )50% CLUSTALW 32 4880b 608
3 20

Kulathinal et al. (26) Diptera 475c 1527 6
Ferrer-Costa et al. (33)d Any mammals )10% ()60%) Pfam 287 (24) 9334 1658 (52)

184 847
Barešić et al. (10) Any Nonee MUSCLE 245 2328 453
Zhang et al. (missense) (9) Human, ANFO 2628 44348 62

neanderthal,
chimpanzee

Poon et al. (24) Set Af Any 43g 115 88
Poon et al. (24) Set Bf Any 17g 59 49
aKondrashov et al. tested all found orthologs (with no sequence identity threshold) for CPDs and then switched to mammalian-only orthologs
to identify compensatory mutations.
bPrecise numbers are somewhat unclear. They report 608 CPDs and that this is approximately 10% of DAMs. In Table 1 of their paper,
there are 4272 ‘known missense’ mutations which we believe to be PDs because the last row of the table has more CPDs than ‘known
missense’ mutations. This makes a total of 4880 (4272q608) DAMs.
cIn the Kulathinal group dataset, the reference species is Drosophila melanogaster instead of human.
dNumbers in parentheses refer to the CPDs with structural data available, used for structural analysis.
eFunctional equivalence among homologs used instead of a sequence identity threshold.
fThe Poon group Set A includes mutations brought about by mutagenic agents, whereas Set B does not.
gThere is no reference species in the Poon et al. study.

whereas the high fraction in the Barešić dataset results from
the fact that no limit was applied to the divergence of the
homologous sequences. As sequences diverge more, the
environment around any given residue is likely to be more
different and therefore a residue change is more likely to be
tolerated, or indeed, required. Kondrashov et al. found that,
when using a dataset containing only homologs with at least
50% identity to the reference sequence, on average around
1 in 10 disease-causing mutations is seen to be compensated
in other species (11). By contrast, alignments of recently
diverged sequences we.g., three Dipteran genomes (26) or
chimpanzee, neanderthal, and modern human (9)x show far
fewer CPDs (0.4% in the Kulathinal dataset and 0.14% in
the Zhang dataset).

The motivation for not using any sequence identity thresh-
old in our study (10) was that we wished to compare the
local structural effects of mutations that could be compen-
sated with those that could not. Therefore, having a set of
CPDs that was as broad as possible meant that our uncom-
pensated PD dataset was likely to be more accurate. The
dataset was built using only FEPs was defined by McMillan
and Martin (12)x. Thus, whereas other groups identify hom-
ologs using a BLAST (27) search with default parameters
(11), or manually curated alignments from Pfam (28), we
selected all orthologs where function has been conserved as
defined by annotations in UniprotKB/SwissProt. These data
are available in our FOSTA database (12).

Properties of compensated mutations

and mechanisms of compensation

Maintaining a functional protein requires a delicate balance
between the residues present to obtain proteins having a nar-
row range of thermodynamic stability, a range of DG from

-3 to -10 kcal/mol. If the stability is any lower, then the
protein will start to unfold, becoming a target for degrada-
tion; higher stability means that the protein cannot be turned
over effectively and therefore often becomes unresponsive to
cell regulation or can lose its activity (29). In addition, mutat-
ed proteins of both lower and higher stability than optimal
often show increased propensity for aggregation, although
aggregation potential is not solely dependent on protein sta-
bility. Amino acid substitutions result in an average DDG of
0.5–5 kcal/mol (29), so it is clear that most SAAPs will have
a significant effect on protein stability and consequently pro-
tein function and the individual’s fitness.

From a structural perspective, compensated mutations
have been shown to have less damaging effects than uncom-
pensated mutations. Henikoff and Henikoff (30) created the
BLOSUM amino acid substitution matrices from around
2000 blocks of aligned sequence segments from more than
500 groups of related proteins to show how frequently one
amino acid can substitute for another in homologous pro-
teins. These matrices were designed for use in protein
sequence alignment and are familiar to most biologists as the
default similarity matrix for use with the BLAST sequence
searching tool (27). Ferrer-Costa et al. (31) showed that
CPDs show significantly larger BLOSUM62 scores than PDs
– in other words the amino acid replacements observed in
CPDs are more frequently observed to occur in general in
homologous proteins, whereas the replacements seen in PDs
are less commonly observed between homologous proteins.
They also found that CPDs are characterized by less extreme
changes in amino acid volume and hydrophobicity when
compared with uncompensated PDs.

In a previous study (10), we examined 14 different local
structural effects covering stability and folding of the protein,
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as well as binding effects and functional annotations. We
found that CPDs are less likely to display any of these
effects, especially if the structural effect is likely to require
several consecutive compensatory mutations for full fitness
reversal rather than it being possible to compensate using
a single substitution. For example, a buried mutation, where
a small residue is replaced by a larger residue, could cause a
clash. However, although it is theoretically possible that a
single mutation could do so, compensation of a clash is most
likely to be achieved by making several smaller changes.
Both Ferrer-Costa et al. (31) and Barešić et al. (10) found
that CPDs have a higher average solvent accessibility. In
other words, they are much more likely to be found on, or
near, the protein surface.

Compensatory mutations in evolution

In the context of evolution, compensated mutations become
fixed in a population through ‘co-adaptation’ or, more pre-
cisely, through ‘sign epistasis’ as defined above. At the pro-
tein level, depending on the context and role of the
deleterious mutation (D), the compensatory mutation (C) can
be on the same protein, or on an interacting partner protein.
The compensatory mutation, C, could have no effect on fit-
ness or could itself be somewhat deleterious, but at such a
level that it can exist in the population. However, the main
feature of C is that, when it co-occurs together with the del-
eterious mutation, D, it reverses the negative fitness effect
of D to a neutral or positive one and, if C by itself has any
deleterious effect, the combination of C and D will have a
neutral or positive effect. Thus during evolution, when fit-
ness landscapes are explored, compensation provides a path
through the valleys of lower fitness, allowing individuals to
travel from one peak to another (5).

As discussed above, numerous cases of compensation
have been identified and documented in proteins (9–11).
Although a classic compensatory event to achieve fitness
reversal would result from C being a single amino acid
change, in proteins it is also perfectly possible – and indeed
more likely – for C to consist of a complete change in envi-
ronment from multiple amino acid changes.

Poon et al. (24) set out to study how many different com-
pensatory mutations act on a given deleterious mutation.
They performed a maximum-likelihood analysis of experi-
mental data collected from the literature on suppressor muta-
tions (which are equivalent to compensatory mutations) to
determine the shape of the statistical distribution for the
number of compensatory mutations per deleterious mutation.
They found that the data were best explained by an L-shaped
gamma distribution which predicted an average of 11.8 com-
pensatory mutations per deleterious mutation to achieve full
sign epistasis and compensate for the deleterious effect of a
DAM (24). Interestingly, they also found that, when they
partitioned the data into viruses, prokaryotes and eukaryotes,
there was a significant improvement in the fit to the model:
on average, there were fewer compensatory mutations in
viruses than in prokaryotes or eukaryotes. They suggested
that the differences in genome size and gene length in viruses
compared with prokaryotes and eukaryotes means that the

number of possible interactions within and between gene
products is constrained.

In our more recent structural study (10), we showed that
CPDs are surrounded by significantly more diverged residues
than PDs. As described above, we created sequence align-
ments of functionally equivalent homologous proteins for
each instance in which a human deleterious mutation (DAM)
is known wtypically identified from OMIM (32, 33), but also
from a number of locus-specific mutation databases (7)x. The
DAMs were then assigned as CPDs or PDs depending on
whether the damaging mutant residue was observed as the
native in another species. Where a structure was available
for the human protein, we identified amino acids within an
8 Å sphere around the DAM. Having identified these struc-
tural neighbors in the human protein which form the envi-
ronment surrounding the DAM, we mapped their positions
back onto the sequence alignment. We were then able to
calculate the fraction of these structurally neighboring resi-
dues that were mutated in each of the sequences when com-
pared with the human sequence. For CPDs this was done
just with the sequences in which compensation was
observed, whereas for PDs it was done for each sequence in
the alignment. We then plotted this local fraction of mutated
residues against the overall (whole protein) sequence identity
between the human and non-human sequence.

We found that this environmental ‘sphere’ compensation
appeared on average to occur as a result of random drift in
the sequence. We fitted a straight line to the data imposing
the biologically obvious constraint that the line had to pass
through the 100% identity, zero mutations point – if the
sequences are 100% identical then there can be no mutations
within the local environment. Allowing for the fact that
sequence identity ranges from 0% to 100%, whereas our
fraction of mutations scale runs from 0 to 1 (and that one
scale is scoring conservation, whereas the other is scoring
mutations), this fitting revealed a slope of 1.007 for CPDs
and 0.9 for PDs. The slope of approximately 1 for CPDs
implies that the environment around a CPD is mutated at the
same rate as the sequence overall such that compensation
occurs as a result of random drift in the sequence. By con-
trast, the environment around PDs is more conserved than
the sequence as a whole.

Although this ‘sphere compensation’ is probably the most
common compensatory mechanism in proteins, the alterna-
tive classical ‘one-on-one compensation’ can also occur
where one deleterious SAAP is compensated by another sin-
gle mutation in the structural vicinity. This type of compen-
sation is easier to detect, especially in analyses where only
recently diverged homologs are considered (9, 11, 26). Two
examples of one-on-one compensations are shown in the
case study presented below.

The Poon et al. study (24) also investigated whether com-
pensatory mutations are intragenic (i.e., occur within the
same gene and hence the same protein chain as the delete-
rious mutation) or intergenic (i.e., occur within a different
gene and protein chain from the DAM). Overall, from their
dataset of 129 CPDs, they found that the majority (78%) of
compensatory mutations were intragenic suggesting that the
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complexity of interactions between proteins is likely to be
less important than the complexity of the protein itself.
However, when they studied different taxa separately, they
found that compensation is much less likely to be intragenic
in viruses (69%) than in prokaryotes (92%) and eukaryotes
(90%). They proposed that this is probably a result of the
fact that viral genes tend to be shorter, thus limiting the num-
ber of internal interactions.

Research performed by Povolotskaya and Kondrashov
(34) suggests that compensated pathogenic deviations are
unidirectional drivers of evolution; once compensation
occurs, it is unlikely that sequences will revert to the original
wild-type state. Their investigation of divergence of proteins
in sequence space showed that, at any given point in time,
only 2% of all possible missense mutations are allowed in
order to avoid non-functional protein products. If we assume
that only one missense mutation at a time can be introduced
into the sequence, then we can consider how this observation
affects a protein chain consisting of 100 residues. For every
residue there are 19 possible substitutions, so at any one time
1900 (100=19) mutational events could occur. Given that
2% of these are ‘allowed’, 38 missense mutations will result
in a functional protein. Let us assume that an allowed muta-
tion of residue X to residue Y occurs at position n (i.e., Xn™

Y). At the next step, there will again be 38 allowed missense
mutations, one of which would be the reversal of the muta-
tion that occurred in the previous step (i.e., Yn™X). Thus,
there is a 1 in 38 (2.6%) chance that this will occur, but a
97.4% chance that another mutation will occur. From this
statistic, we do not know how the 38 allowed mutations will
be distributed across the 100 amino acid positions of the
protein. Thus, the second mutation could result in Yn™Z,
but in general it is much more likely that the mutation will
occur at a location m that is different from n. Thus, we are
much more likely to obtain a double mutant after the second
step than we are to obtain a reversion to the original
sequence or to introduce a different amino acid at position
n. Consequently, subsequent mutational events will lead to a
drift away from the original sequence and it is intuitive that
compensation will be observed significantly more often than
reversal to the original sequence.

The question remains as to the timeline of compensatory
events. As discussed in our previous study (10), DePristo et
al. (29) proposed two hypotheses of CPD evolution based on
models of biophysical properties. In the first scenario, a com-
pensatory mutation C is phenotypically neutral and stable,
thus fixing itself quickly in the population. The deleterious
mutation D is unstable and can only become fixed in the
population if it occurs after the compensatory mutation C.
Thus, D will exist as a CPD because of the compensatory
effect of C. In the second model, both D and C are individ-
ually deleterious, but either can exist in the population at
low levels; it is known that small frequencies of low-fitness
mutations exist in large populations. Consequently, if D is
present in the population at low levels, then C can occur
later and fix the D–C genotype in the population because of
the epistatic effect of the mutant pair. Cowperthwaite et al.
(2), in their in silico RNA models discussed earlier, con-

firmed that the deleterious mutation, D, can occur first.
Equally, the compensatory mutation C can be present in the
population at low levels and D can occur later leading to
fixation of the D–C genotype in the same way. A less likely,
but possible, scenario is that both C and D occur simulta-
neously. Provided the mutation rate is sufficiently high, epi-
static selection with compensatory mutations is the most
prevalent mechanism for fixation of otherwise deleterious
mutations.

Artificial compensatory events

With recent advances in sequencing technology (35),
sequencing large amounts of genomic data is becoming
cheaper, faster, and more accessible, providing new oppor-
tunities in biomedical research. Genome-wide association
studies (GWAS) are becoming more and more widespread,
associating mutations with both high- and low-penetrance
disease phenotypes. An important area of interest is the
ability to predict whether a given mutation – particularly a
SAAP – will lead to disease. Numerous tools have been
developed both to analyze the local structural effects of
mutations and to predict whether mutations will be damag-
ing, many of these working mostly at the sequence level.
Among these are SAAPdb (7), SNPs3D (36), stSNP (37),
ModSNP (38), MutDB (39), LS-SNP (40), TopoSNP (41),
SIFT (42), SNPeffect (43), PolyPhen (44, 45), subPSEC
(46), and nsSNPAnalyzer (47).

Recently, Critical Assessment of Genome Interpretation
(CAGI) (48), a community experiment to assess computa-
tional methods for predicting the phenotypic impacts of
genomic variation objectively, organized by Steve Brenner,
John Moult and Susanna Repo, was run for the first time.
Participants were provided with genetic variant data and
asked to make predictions of the resulting molecular, cellular,
or organismal phenotype. Results from over 100 prediction
submissions from eight countries were evaluated against
experimental data by independent assessors and discussed at
a workshop in December 2010 (see http://genomeinterpre-
tation.org/).

One of the prediction datasets was particularly interesting
in the context of compensated mutations. A dataset of p53
mutations (see http://genomeinterpretation.org/content/p53/)
was designed to test prediction of ‘cancer rescue mutations’.
p53 is a tumor suppressor protein which plays a central role
in detecting DNA damage, slowing the cell cycle to allow
DNA repair enzymes to do their work (49), or if DNA dam-
age is too severe, triggering programmed cell death (apop-
tosis) (50, 51). If p53 is rendered non-functional as a result
of mutation, this central checkpoint is lost, allowing other
mutations to accumulate in the DNA eventually leading to
cancer. Unusually for tumor suppressor genes, in which most
mutations tend to be frameshifts or nonsense codons, the
majority of mutations in p53 are single DNA base changes
resulting in a SAAP. In some cases, mutations at second
intragenic sites are known to rescue the function reactivating
otherwise inactive p53 (52–54) and are therefore acting as
compensatory mutations. The Lathrop group at the Univer-
sity of California, Irvine, has been performing a complete
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Figure 3 Compensated mutation in human GTP cyclohydrolase I. Residues 249 and 250 are shown with a surface in all five chains. (A)
Structure of the wild-type homopentamer with each chain shown in a different color. (B) Zoomed view of residues 249 and 250 from all
five chains with the residues shown in green and red, respectively. (C) The disease-causing Arg249™Ser mutation modeled into all five
chains. (D) The compensatory Ser250™Lys mutation modeled into all five chains as well as the Arg249™Ser mutation.

functional census of these cancer rescue mutations (55). In
this case, the aim of the CAGI prediction experiment was to
predict whether a given mutation is able to rescue the func-
tion of p53 and thus act as a compensatory mutation (56,
57). Although the results of the CAGI prediction experiment
have not been published at the time of writing this review,
we suspect the field of compensation prediction will progress
significantly in the near future. If a disease-associated dele-
terious mutation is amenable to compensation (i.e., it is seen
to be a CPD), it is likely that other (non-mutational) mech-
anisms of compensation could also be applied. For example,
the Fersht group in Cambridge has shown that some p53
mutations can be compensated by binding small peptides that
stabilize the p53 core domain (58, 59). More recently, small
molecules which are more likely to be usable drug leads have
been used successfully in the same way (60–63).

Case study: two compensated mutations and their

environment

There are many examples of compensation which include the
p53 rescue mutations described above where, in some cases,
crystal structures have been solved to study the mechanism
of compensation (53). Here, we will discuss two examples
of compensated mutations. First, a CPD in human GTP
cyclohydrolase (GTPCH) is presented, with an obvious
destabilizing effect on the protein structure, while a compen-
sating mutation has a stabilizing effect restoring enzyme
activity. The second example, in ornithine transcarbamylase
(OTC), is less obvious at the structural level, despite being
confirmed by in vitro enzyme activity experiments.

GTPCH, encoded by the gene GCH1, plays a role in the
folate and biopterin biosynthesis pathways and hydrolyses
guanosine triphosphate (GTP) to form 7,8-dihydroneopterin-
39-triphosphate. This is the first step in the biosynthesis of
tetrahydrobiopterin, an essential cofactor required by aro-
matic amino acid hydroxylase (AAAH) and nitric oxide syn-
thase (NOS). These, in turn, are involved in the biosynthesis
of monoamine neurotransmitters such as serotonin, melato-
nin, dopamine, noradrenaline, adrenaline, and nitric oxide.
Mutations are associated with phenylketonuria (PKU) and

hyperphenylalaninemia (HPA), as well as levodopa-respon-
sive dystonia.

Figure 3A shows the whole wild-type GTP cyclohydrolase
I which consists of five identical chains, with mutually par-
allel C helices stabilizing the pentameric structure (64). The
images, rendered with PyMol (http://www.pymol.org/), are
based on coordinates obtained from Protein Databank entry
1FB1 accessible online at http://www.pdb.org/ (65). Figure
3B shows details of the wild-type residues that are mutated
(residues 249 and 250). The wild-type Arg249 in one chain
and Ser250 in the next chain form a tight ring-like structure.

An Arg249™Ser mutation is associated with disease,
causing a severe decrease in enzyme activity and resulting
in recessive levodopa-responsive dystonia (OMIM:
600225.0016). Figure 3C shows the effect of introducing an
Arg249™Ser mutation in all five chains modeled using the
minimum perturbation protocol (66) implemented in the pro-
gram Mutmodel (67). The non-covalent interactions between
residues 249 and 250 are reduced, presumably destabilizing
the complex and leading to disease. However, the function-
ally equivalent protein in Rickettsia bellii has a serine at 249
in the wild-type enzyme, but also has a compensatory lysine
at 250, which is also modeled into the structure in Figure
3D restoring and, indeed, enhancing the ring-like set of
interactions.

A less clear example of a compensatory mutation is seen
in ornithine transcarbamylase (OTC) which catalyzes the
reaction between carbamoyl phosphate and ornithine to form
citrulline and phosphate. In prokaryotes and plants, it is
involved in arginine biosynthesis, whereas in mammals it is
a key enzyme of the urea cycle. Figure 4A shows one mon-
omer of the enzyme which exists as a trimer. The structure
for OTC in the Protein Databank shows only a monomer
(PDB ID: 10TH), but the assembly of the biologically rele-
vant trimer can be obtained from PISA (68) available online
at http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html. OTC
deficiency, although a rare condition occurring in around 1
in 80 000 births, is the most common disorder of the urea
cycle which removes ammonia from the body. Mutations in
OTC lead to an accumulation of toxic ammonia which can
lead to developmental delay and mental retardation, progres-
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Figure 4 Compensated mutation in human ornithine transcarbamylase. (A) Structure of wild-type human OTC. (B) View on helix 3, with
residues 125 and 135 shown in red and green, respectively. (C) The disease-causing Thr125™Met mutation, modeled structure. (D) A
compensatory Ala135™Thr in addition to the Thr125™Met mutation.

sive liver damage, skin lesions, poorly controlled breathing,
seizures, coma, and death.

Figure 4B shows helix 3 from PDB entry 10TH and high-
lights residues 125 and 135 in red and green, respectively
(69). Thr125™Met is a known disease causing mutation in
humans resulting in lethal neonatal congenital hyperammo-
nemia (OMIM: 311250). Suriano et al. (70) showed that the
human enzyme with the Thr125™Met mutation has a neg-
ligible rate of enzyme activity in in vitro constructs. How-
ever, this mutation is a CPD as Met is the native residue in
chimpanzees. The only other residue which differs between
human and chimp OTC is residue 135 where there is an
Ala™Thr mutation which must compensate for the delete-
rious effect of the Thr125™Met mutation. However, the
mechanism of compensation is unclear as Figure 4 shows
that residues 125 and 135 are not in direct contact and this
is also the case in the trimer. However, as previously sug-
gested by Azevedo et al. (71), the presence of Thr125 might
be crucial at the end of helix 3 because this helix is involved
in trimerization of human OTC, and the chimpanzee com-
pensates for its loss by having a threonine introduced at the
other end of helix 3 (at position 135), restoring enzyme activ-
ity to rates similar to human wild-type. Interestingly, Suriano
et al. (70) also suggested that the ancestral genotype could
have had threonines at both positions 125 and 135 and had
a higher enzyme activity than either the human or chimpan-
zee enzymes. If this is the case, then this mutation is an
example of two species starting to explore fitness ridges, in
search of another local optimum.

Expert opinion

In conclusion, although there is also the possibility that epi-
genetic effects can also be compensatory (i.e., some differ-
ence in the non-protein environment), compensation of
deleterious mutations through epistatic protein mutations is
a very common effect. The frequency of these compensatory
mutations depends on the time elapsed from the common
ancestor and the data in Table 1 show that there is a corre-
lation between the frequency of CPDs and the diversity of
the homologs used to detect CPDs. For example, our dataset
(10) (where we apply no constraint on the sequence identity

between functionally equivalent homologs) shows a higher
ratio of CPDs compared with the dipteran-only (26) or mam-
malian-only (9, 11, 31) datasets.

Study of the evolution of RNA molecules and in silico
models of RNA evolution show clear examples of one-
on-one compensation (2). Although compensation in proteins
is often more complex, involving multiple compensatory
events changing the environment in which a residue exists,
there are also several examples of one-on-one compensation
including ‘cancer rescue’ mutations in p53. As shown by
DePristo et al. (29), any mutation has an average effect on
protein stability (DDG) of around 0.5–5 kcal/mol. Restoring
protein stability and hence regulated activity will often need
compensatory mutations that restore stability to the accept-
able range of free energies. From a structural analysis per-
spective, compensated mutations are preferentially on the
protein surface (10, 31). As shown by Poon et al. (24), com-
pensatory events are most commonly intragenic, so the sur-
face location is likely to be a result of it being easier to
accumulate compensatory events (probably before the CPD
mutation occurs) rather than it being anything to do with
interactions with other proteins. In addition, CPDs have
‘milder’ effects on the protein structure than uncompensated
mutations (10, 31) and tend to be more conservative in nature
(31).

Outlook

CPDs will continue to be an interesting area of research in
understanding evolution and traversal of the fitness land-
scape. As more species are sequenced, the identification of
true PDs will become more accurate. This will allow us to
compare CPDs and PDs in a more accurate manner and
therefore understand more completely which mutations can
be easily compensated and which cannot. The CAGI exper-
iment described above has led the way with the challenge of
predicting which mutations will be ‘cancer rescue’ mutations
in p53 and this will become a more significant area of
research. The fact that certain mutations can be rescued or
compensated by an amino acid change will also allow us to
identify types of mutations that, in general, can be more eas-
ily rescued leading us towards the possibility of drugs that
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can rescue protein function. Consequently, studying CPDs is
not only of interest in understanding evolution, but is also
important in developing future drugs.

Highlights

• Compensation of deleterious mutations through epistatic
protein mutations is a very common effect.

• The frequency of compensated mutations depends on the
time elapsed from the common ancestor – more diverged
sequences are more likely to show compensatory events.

• Study of RNA molecules and in silico models of RNA
evolution clearly show one-on-one compensation.

• Compensation in proteins is more likely to involve mul-
tiple compensatory events, but there are also several
examples of one-on-one compensation.

• ‘Cancer rescue mutations’ in p53 are an example of one-
on-one compensation.

• CPDs are more likely to occur on the protein surface, be
more conservative in nature, and be less damaging in
structural terms than PDs.

• Prediction of compensable mutations could allow design
of drugs that are able to compensate for the effects of a
damaging mutation.
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