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Abstract

The aldo-keto reductase (AKR) superfamily consists of over
150 protein members sharing similar structure and enzymatic
activities. To date, 13 human AKRs have been identified, and
they participate in xenobiotic detoxification, biosynthesis and
metabolism. Increasing evidence suggests the involvement of
human AKR proteins in cancer development, progression
and treatment. Some proteins demonstrate multiple function-
al features in addition to being a reductase for carbonyl
groups. This review article discusses the most recent progress
made in the study of humans AKRs.
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Introduction

Aldo-keto reductases (AKRs) are a large group of NAD(P)H-
dependent protein enzymes with structural similarities. They
are evolutionarily related and pervasively exist in a wide
range of organisms, from bacteria to humans (1, 2). Over 150
AKRs have been identified thus far and a web page (http://
www.med.upenn.edu/akr/) supported by Dr. Penning holds
the most updated information on this protein superfamily.

According to their sequence homology, AKR proteins are
divided into 15 families (1, 3, 4). Proteins with more than
40% sequence identity are grouped into a family and those
sharing over 60% identity are categorized into a subfamily.
A nomenclature system of AKR proteins designates a num-
ber to identify a family, a letter to indicate a subfamily, and
then another number following the letter to denote a unique
protein (4). For instance, aldo-keto reductase family 1 mem-
ber B1 (AKR1B1) indicates that this protein belongs to fam-
ily 1, subfamily B of the AKR superfamily, and it is the
protein no. 1 in the subfamily B. In addition to the desig-
nation in this nomenclature system, some proteins in the
AKR superfamily have different terms given by researchers.

For example, AKR1B1 is also known as aldose reductase
(AR), and AKR1B10 is also referred to as aldose reductase-
like-1 (ARL-1). Table 1 summarizes the AKR proteins expres-
sed in humans, which fall within three families (AKR1,
AKR6 and AKR7).

AKRs are mainly cytosolic monomeric protein enzymes
with molecular weights at 34–37 kDa. AKRs use pyridine
nucleotides (NADH or NADPH) as cofactors and catalyze a
metabolic oxidation reduction, reducing carbonyl (aldehydic
and ketonic) groups into corresponding alcoholic forms.
There are two exceptions for the AKR proteins. First, not all
AKR proteins are an enzyme. For instance, Rho (AKR1C10)
and RhoB crystallins (aldose reductase-related protein) are
major components of frog and gecko lens. They retain amino
acid residues required for catalytic activity and bind to pyr-
idine nucleotides, but have not or very limited enzyme activ-
ity towards general AKR substrates (5, 6). Similarly, human
AKR6 proteins are channel proteins, controlling Kq ion con-
ductance, but do not have enzymatic activity. Second, not all
AKR proteins are monomeric. For example, AKR6 b-sub-
units form a tetramer at the base of the Kq channel, and
AKR7A1 and AKR7A4 in rat form either homo- or hetero-
dimers (7). This review article focuses on the discussion of
human AKRs, especially on their intriguing roles in cancer
development, progression and therapeutics.

Structure and enzymatic activity of AKRs

A public protein data bank (PDB; http://www.pdb.org/pdb/
home/home.do) lists 84 crystal structures from over 25 AKR
proteins, and several are demonstrated for the binary wE-
NAD(P)Hx and/or ternary wE-NAD(P)H/substratex complex-
es, where E indicates enzyme (an AKR protein). A (b/a)8

barrel motif represents the common crystal feature of AKR
protein (Figure 1) (8, 9). The hydrophile outer envelope of
eight external a-helices embraces the eight inner parallel
hyperboloid b-strands, and these ‘rigid’ structure elements
are linked together by ‘soft’ loops. This motif has extensive
functional utility, such as binding phosphate groups or met-
als, forming active catalytic interfaces or acting as a gated
barrel for channeling reaction intermediates. Our laboratory
found that AKR1B10 associates with acetyl-CoA carboxyl-
ase-a (ACCA) and prevents its ubiquitin-dependent degra-
dation in human breast and colon cancer cells and,
interestingly, this association does not affect the enzymatic
activity of AKR1B10 (10). This physiological phenomenon
could benefit from this structural feature of AKR1B10. Fac-
tually, owing to the advantages, this featured motif is present
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Figure 1 Crystal structure of the AKR1B1ØNADPH binary
complex.
The structure was downloaded from the RCSB Protein Database
(ID�: 1ABN). The ribbon drawing is a bottom-view representation
of the protein with NADPH bound to the active site.

Figure 2 Kinetic mechanism of carbonyl reduction catalyzed by
AKR proteins.
Binding of NADPH causes a conformational change of aldo-keto
reductase (AKR) proteins (E to E*) in order to bind substrate (S).
The alcoholic product is formed by transfer of the hydride ion from
NADPH and addition of proton from the solvent to the carbonyl
substrate. After the alcoholic product (P) is released, the second
conformation change occurs (E* to E) to release NADPq.

in up to 10% of proteins in mammals (11). The active site
in this motif of AKR proteins is located at the C-terminus,
which is considered as the evidence of a common ancestry
(12). In fact, this structure is particularly adaptive for the
evolution of new function.

Although the a-helix and b-strand structure is conserva-
tive among AKR proteins, diversity in amino acid sequence
and/or peptide length exists in connective loops. This diver-
sity results in variations in the arrangement of a-helices, but
the inner b-strand barrel is relatively constrained. As a result,
binding and catalysis can be varied without effects of the
basic protein structure. The loop located between the seventh
and eighth b-strands of the barrel is a ‘hot spot’ of such
variations. This region is diversified in the loop length and
the number of additional helices, offering identity to indi-
vidual families. The variations of loop length also occur
among the members in the same subfamily. For example,
aldehyde (AKR1A1) and aldose (AKR1B1) reductases have
a long loop between b9 and a7, which opens and closes
upon binding or releasing of the cofactor, thus facilitating
efficient binding to NADPH (13). However, in some AKRs,
such as hydroxysteroid dehydrogenases (AKR1Cs), the shorter
loop results in the absence of opening or closing movements
(14).

In an oxidation reduction reaction, the pyridine nucleotide
cofactor and carbonyl substrate bind to two different regions
of the protein and converge at the active site. Most AKRs
prefer binding NADPH over NADH as a reducing cofactor
(15), but exceptions exist. For instance, AKR1C12 and
AKR1B7 (also named MVDP) favor NADH rather than
NADPH (16). The structural basis of NADPH preference is
related to the positively charged lysine and arginine residues

that bind to pyrophosphate backbone and 59-phosphate group
of pyridine nucleotide. The pyridine nucleotide cofactor bind-
ing site is relatively conserved, whereas the substrate binding
cavity shows variations, which is largely defined by the res-
idues from loops. Nevertheless, the active site is highly con-
served across the whole family proteins. The conserved
catalytic tetrad consists, such as AKR1B1, of Tyr-48, His-
110, Lys-77 and Asp-43 (17–22). They form an oxyanion
binding site with the nicotinamide ring of the cofactor via a
hydrogen bonding network.

Most AKR proteins are enzymes catalyzing the NAD(P)H-
dependent reduction of aldehydes and ketones to their cor-
responding alcoholic forms. Reduction catalyzed by AKRs
proceeds in two steps: hydride ion transfer from NAD(P)H
to the carbonyl substrate and proton addition from the sol-
vent for reduction of the carbonyl to alcohol (Figure 2).
Hydride transfer is 4-pro-R specific and the acceptor carbon-
yl group is polarized by the conserved active site in the tet-
rad, which acts as a general acid base for the reaction (23,
24). Mutation analysis suggested that the acid base catalytic
group in AKRs is Tyr-48 in most cases. This tyrosine is uni-
versally conserved in all AKRs, whereas His-110 is not (25,
26). During the reaction, NAD(P)H cofactor binds first and
leaves last. Transient kinetic studies showed that significant
conformational changes occur upon binding of the cofactor
to form a tight binary complex. Conformational changes dur-
ing the release of cofactor partially or completely determine
the overall turnover rate (23, 24), but in AKR1C ketosteroid
reductases, the rate of chemical conversion and steroid prod-
uct release also contribute to the turnover rate (27, 28).
AKRs have broad diversity of substrates, which includes
most biologic aldehydes and ketones generated endogenous-
ly during metabolism or from environment, such as food com-
ponents, drugs or toxins. Therefore, AKRs are considered as
protective enzymes responsible for xenobiotic detoxification.

AKR activity can be inhibited by small chemicals through
interaction with the active site. For example, most tight-bind-
ing aldose reductase inhibitors (ARIs) have a polar group,
usually a carboxylate, tethered from a hydrophobic core con-
structed by one or more ring structures. Inhibitors bind with
their polar head group oriented close to the pyridine ring,
forming hydrogen bonds with residues Tyr-48, His-110 and
Tyr-111. Extensive hydrophobic interactions between inhib-
itors and AKR residues that line the deep hydrophobic active
cavity help to stabilize the ternary enzyme-coenzyme-inhib-
itor complex (29, 30). In the past years, ARIs have been
developed as therapeutic agents of diabetic complications
(31, 32).
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Table 2 Chromosome locations and structures of human AKR genes.

Gene Chromosomal localization Exon number Access number

akr1a1 1p33–p32 8 J04794
akr1b1 7q35 10 J04795
akr1b10 7q33 10 AF052577
akr1c1 10p15–p14 9 D26124
akr1c2 10p15–p14 9 L32592
akr1c3 10p15–p14 9 L43839
akr1c4 10p15–p14 9 M33375
akr1d1 7q32–q33 7 Z28339
akr6c3 3q26.1 7 U33428
akr6c5 1p36.3 13 U33429
akr6c9 17p13.1 13 AF016411
akr7a2 1p35.1–p36.23 9 AF026947
akr7a3 1p35.1–p36.23 13 AF040639

Human AKRs

In humans, 13 different AKR proteins have been identified
that fall into three different AKR families: AKR1, AKR6
and AKR7. The AKR1 family includes AKR1A1 (aldehyde
reductase), AKR1B1 (aldose reductase), AKR1B10 (aldose
reductase-like-1, also named small intestine aldose reduc-
tase), AKR1C1 w20a-hydroxysteroid dehydrogenase (HSD)/
dihydrodiol dehydrogenase (DD1)x, AKR1C2 (type 3 3a-
HSD/bile acid binding protein), AKR1C3 (type 2 3a-HSD
and type 5 17b-HSD/prostaglandin F synthase), AKR1C4
(type 1 3a-HSD/chordecone reductase) and AKR1D1 (ster-
oid 5b-reductase); the AKR6 family contains b-subunits of
the voltage-dependent shaker potassium channels (AKR6A3,
AKR6A5 and AKR6A9); and the AKR7 family compri-
ses aflatoxin aldehyde reductases AKR7A2 and AKR7A3
(Table 1).

In the human genome, AKR members belonging to the
same subfamily (except for Kvb in AKR6) usually form a
gene cluster located on the same chromosome and share sim-
ilar gene structures. The AKR1A and AKR1D subfamilies
have only one member (AKR1A1 or AKR1D1) in humans,
and the gene is located on chromosome 1p32–33 and 7q32–
33, respectively (Table 2). The AKR1B1 and AKR1B10
gene are located closely on chromosome 7q33–35 and con-
tains 10 exons each. The four human AKR1C genes, con-
sisting of nine exons, form a distinct cluster on chromosome
10p14–15. The two human aflatoxin reductase genes, AKR7A2
and AKR7A3, reside on chromosome 1p35.1–36.23 and are
composed of seven exons. Genes of the AKR6 family (three
Kvb genes) are different from other AKRs in several aspects.
For example, these genes do not form a cluster on a chro-
mosome, but are located on chromosomes 1, 3 and 17,
respectively. In addition, despite the similarities in intron/
exon structures, the gene length varies from 7.0 kb for
AKR6A9, Kvb3 to 416 kb for AKR6A3, Kvb1.

Tissue distribution of human AKRs

AKR1A1 is a general metabolic enzyme that is involved in
the reduction of glyceraldehyde to glycerol and melvadate to

mevalonic acid, playing a central role in triglyceride and cho-
lesterol biosynthesis (33, 34). This enzyme is ubiquitously
expressed in most tissues with the highest level in the kidney
proximal tubules (35). AKR1A1 is also highly expressed in
brain, which is consistent with its role in the metabolism of
aldehydes derived from monoamine oxidase (36). AKR1B1
that catalyzes the first step in the polyol pathway is also
broadly expressed with high expression levels in the liver,
skeletal muscle, cardiac muscle, kidney, ovary, testis, prostate
and small intestine (37, 38). By contrast, AKR1B10 shows
restricted tissue distribution, predominately expressed in the
small intestine, colon and adrenal gland (39, 40). This spe-
cific distribution of AKR1B10 could be functionally related
to its efficient detoxification of dietary or lumen-microbial
a,b-unsaturated carbonyls (41–43). Four AKR1C proteins in
humans that share over 86% amino acid sequence homology
are found in the liver, but have different extrahepatic distri-
butions. AKR1C4 is expressed predominantly in the liver,
but AKR1C1–AKR1C3 are highly expressed in the small
intestine, lung, mammary gland and prostate, which reflect
their roles in xenobiotic and steroid metabolism (44, 45).
AKR1D1 (also known as steroid 5b-reductase) appears to be
liver specific owing to its role in bile acid biosynthesis and
steroid hormone clearance (46, 47). Similar to AKR1A1 and
AKR1B1, AKR7A2 is widely expressed in human tissues
with a high level in the liver, small intestine, kidney and
cerebrum. Its distribution in brain is consistent with its role
in the metabolism of g-aminobutyric acid (GABA) metab-
olite succinic semialdehyde (48). AKR7A3 was cloned and
identified from the liver, but is primarily expressed in the
stomach, colon, kidney and pancreas (49).

Substrate specificity and pathophysiological

roles of human AKRs

Aldehydes and ketones are produced endogenously, e.g., 4-
hydroxynonenal (HNE) and acrolein derived from lipid
peroxidation, glyoxal and methylglyoxal from sugar metab-
olism, and succinic semialdehyde from GABA. Exogenous
carbonyl compounds are present in diet (e.g., 2-hexenal in
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vegetables and diacetyl in butter and wine) and environment
(e.g., chloroacetaldehyde from vinyl chloride and trans-
trans-muconaldehyde from benzene). These unsaturated
chemicals are highly electrophilic and can interact with pro-
teins, nucleic acids, and other macromolecules, inducing cell
damage and apoptosis (41, 42, 50–52). Therefore, unsatu-
rated carbonyls are highly mutagenic and tumorigenic. AKRs
in humans, therefore, can play a primary detoxicant role by
reducing them to less toxic alcoholic forms. AKR1A1 and
AKR1B1 are ubiquitously expressed in human tissues and
show a broad range of substrate specialty. They show high
kcat/Km values in reducing aliphatic aldehydes (e.g., succinic
semialdehyde, 1,2-naphthoquinone and 16-ketoestrone), aro-
matic aldehydes (e.g., carboxybenzaldehyde and nitroben-
zaldehyde), aromatic ketones (e.g., nitroacetophenone), a,b-
unsaturated ketones (e.g., acetone and HNE) and dicarboyl
(e.g., methylglyoxal and hexanedione) (33, 53). These two
enzymes most probably act as universal protective enzymes
against carbonyls. In addition, AKR1B1 is considered as a
causative factor for diabetic complications by converting glu-
cose to sorbitol under hyperglycemia. This is a rate-limiting
step of the polyol pathway, and the polar sorbitol accumu-
lates inside cells and induces osmolytic pressure and oxida-
tive stress. Sorbitol accumulation has been observed in
cataractous lens, Schwann cells and other diabetic lesion tis-
sues; and transgenic mice with AKR1B1 overexpression show
high susceptibility to diabetic cataractogenesis and neuro-
pathy (37, 53).

AKR1B10 with primary expression in intestine and colon
displays strong catalytic activity to a,b-unsaturated carbon-
yls which originated from lipid peroxidation and/or diets,
such as acrolein, crotonaldehyde, HNE, trans-2-hexanal and
trans-2,4-hexadienal (39). Owing to the feature of constant
exposures of the intestine to intracellular, dietary and lumen-
microbial carbonyls, the intestine-specific expression of
AKR1B10 could render it a role as a chemical-preventive
barrier in the intestinal tract. In addition, recent studies from
our laboratory have shown that AKR1B10 associates with
ACCA, a rate-limiting enzyme in fatty acid biosynthesis, and
mediates its ubiquitin-dependent degradation, thus regulating
fatty acid synthesis and cell growth and survival (10, 54).

AKR1C1–C4 proteins are poor catalysts of aromatic alde-
hydes, aldoses or dicarbonyls, but more affinitive to steroid
hormones, prostaglandins, polycyclic aromatic hydrocarbons
(PAHs) and trans-dihydrodiols (44, 45). Recombinant AKR-
17A2 shows narrow specificity towards succinic semialde-
hyde, 2-nitrobenzaldehyde, pyridine-2-aldehyde, 1,2-naphtho-
quinone and isatin, suggesting its role in the detoxification
of these metabolites. Among these, succinic semialdehyde is
an important metabolite of the neurotransmitter GABA and
is considered to be a physiological substrate of AKR7A2 in
neuron (48). AKR7A3 has broad activity towards toxic alde-
hydes, but its physiological role remains to be elucidated
(49). AKR1D1 is the only enzyme that catalyzes 5b-ste-
reospecific reduction necessary for bile acid synthesis, sug-
gesting its function in bile acid biosynthesis (46). The
following section is an introduction of some important sub-
strates of AKRs.

Lipid peroxidation products

Lipid peroxidation refers to the oxidative degradation of cel-
lular lipids. It is a process whereby free radicals, such as
reactive oxygen species (ROS), ‘steal’ electrons from the lip-
ids through a chain reaction mechanism. These free radicals
are generated under oxidative stress and play an important
role in disease development, such as diabetic complications,
Alzheimer’s disease, atherosclerosis and cancer. One impor-
tant feature of these radicals is that they can expand and
amplify the oxidative injury through interacting with differ-
ent cellular components. Membrane lipids, especially poly-
unsaturated fatty acids, are the main targets of these radicals
and are oxidized to an array of molecules containing bioac-
tive carbonyl groups, such as HNE and acrolein (52). a,b-
Unsaturated carbonyls are harmful because the aldehydic
group can form a Schiff’s base with the ´-amino group of
lysines. These compounds can also form highly mutagenic
etheno- and heptano-etheno-DNA adducts, inducing DNA
damage and carcinogenesis (55). Interestingly, low levels of
ROS and lipid peroxides, such as HNE and glutathione-con-
jugated HNE, act as important signals in cell growth and
proliferation via a protein kinase C (PKC)-mediated signal-
ing pathway (56–59). However, high HNE levels (e.g., 10–
20 mM) trigger serious cytotoxic processes, such as genomic
DNA laddering, cytochrome c release from impaired mito-
chondrial membrane, and eventual cell death through apop-
totic or necrotic pathways (60). Increased oxidative stress has
been found in a variety of tumors, and HNE is the most
abundant lipid peroxide (61). A rapid and effective clearance
of the lipid peroxides can potentiate the tumor cell growth
and proliferation.

HNE is cleared up via oxidation by aldehyde dehydrogen-
ases to carbonic acid, reduction by reductases to alcoholic
forms, or conjugation with glutathione (GSH) by glutathione
S-transferases (GSTs). GSH-conjugates of HNE need to be
further detoxified by reduction of the aldehydic group. Sev-
eral enzymes are involved in the reduction of HNE and
GSH-HNE, including AKR1A1, AKR1B1 and AKR1B10.
Among them, AKR1B10 possesses significant physiological
significance, demonstrating effective catalytic activity towards
HNE at 0.10 mM, a concentration at or lower than physio-
logical levels (43, 62). AKR1B1 also shows appreciable
activity towards HNE, but is more favorable to GSH-HNE
conjugates. AKR1B10 does not have enzyme activity towards
GSH-HNE (43).

Prostaglandins

Prostaglandins are 20 carbon polyunsaturated fatty acid deri-
vatives that are produced in mammalian tissues. The first
step in the synthesis of prostaglandins is the conversion of
arachidonic acid into prostaglandin H2 (PGH2) by cyclooxy-
genases (COX-1 and COX-2) and then to prostaglandin D2
(PGD2), prostaglandin E2 (PGE2), prostaglandin I2 (PGI2)
or thromboxane A4. AKR1C3 (also named PGF synthase)
catalyzes the conversion of PGH2 to PGF2a and PGD2 to
9a 11b-PGF2, a biologically active stereoisomer of prosta-
glandin F2a (PGF2a) (63). Recent studies demonstrate the
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activity of AKR1C1 and AKR1C2 in catalyzing the conver-
sion of PGE2 to PGF2a, a physiological regulator of uterus
contraction bronchoconstriction (64).

Steroid aldehydes

AKR1C proteins participate in the synthesis and metabolism
of steroid hormones with differential 3-keto-, 17-keto- and
20-keto-steroid reductase activity, regulating bioactivity of
sex hormones in target tissues. AKR1C1 is predominantly a
HSD and reduces progesterone (a potent progestin) to 20a-
hydroxyprogesterone (a weak progestin) (65). AKR1C2 is a
3a-HSD and reduces 3a-dihydrotestosterone (a potent
androgen) to 3a-androstanediol (a weak androgen), regulat-
ing ligand access to the androgen receptor in target tissues
(e.g., prostate). AKR1C3 is a 17b-HSD and converts D4-
androstene-3,17-dione (a weak androgen) to testosterone (a
potent androgen), controlling testosterone access to the
androgen receptor in target tissues. AKR1C3 also reduces
estrone (a weak estrogen) to 17b-estradiol (a potent estro-
gen) and regulates ligand access to estrogen receptor (ER)
in target tissues (e.g., breast and endometrium). In addition,
AKR1C3 reduces progesterone to 20a-hydroxyprogesterone,
and its dual function in the breast may produce a proestro-
genic status, which could be further exacerbated by its ability
to make testosterone, a substrate of aromatase (44, 66). Liv-
er-specific AKR1C4 has high catalytic activity towards 3a-
HSDs and is well suited to perform hepatic clearance of
circulating steroid hormones (44).

Retinaldehyde

Retinaldehyde, i.e., retinal is the precursor of retinoic acid,
a signaling molecule involved in cell growth and prolifera-
tion. Retinoic acid binds to retinoid X nuclear receptors and
heterodimerizes with peroxisome proliferator-activated recep-
tor g (PPARg) to regulate target gene transcription through
the peroxisome proliferator response element, leading to an
antiproliferative response and cell differentiation. In vitro,
AKR1B10 displays high catalytic efficiency for the reduction
of all-trans-retinal, 9-cis-retinal and 13-cis-retinal to the cor-
responding retinols. This conversion can deprive retinoic
acid receptors of their ligand access, leading to metaplasia
or dedifferentiation (67, 68). AKR1B1 also shows activity of
reducing 9-cis-retinal with a relative low kcat-value compared
to AKR1B10 (67). This reductive activity to retinals of
AKR1B1 and AKR1B10 can represent a prereceptor regu-
lation of retinoic acid signaling.

Polycyclic aromatic hydrocarbons

PAHs are ubiquitous environmental pollutants that consist of
fused aromatic rings. PAHs are present in oil, coal and tar
deposits and are produced as byproducts of fuel burning,
present in car exhaust, tobacco smoke and barbecued food.
PAHs are considered procarcinogens and, through metabolic
activation, PAHs induce carcinogenesis, such as lung cancer.
AKRs (AKR1A1 and 1C1–1C4) have dihydrodiol dehydro-
genase activity and convert PAHs into an extraordinarily air-

sensitive chemical, catechol (69). This oxidation reaction is
thermodynamically favored owing to the formation of an
aromatic ring. Catechol readily yields autooxidized o-qui-
none through a one-electron oxidation step and producing
ROS. o-Quinone is reactive and redox-active. In the presence
of NADPH, o-quinone is reduced back to catechol, entering
into another circle of autooxidation. This establishes a futile
redox cycle, through which trace amounts of o-quinone can
deplete cellular NADPH and amplify ROS production (70).
Electrophilic and redox active o-quinone can also form a
spectrum of DNA adducts and potentially induce p53 muta-
tion. It has been reported that in 317 of 372 non-small cell
lung carcinomas, AKR1C1/AKR1C2 was overexpressed by
up to 50-fold compared to the adjacent normal tissues, indic-
ative of poor prognosis (71, 72). Recently, the Penning group
has revealed that AKR1B10 is also implicated in the carcin-
ogenic activation of PAHs (73) and, more importantly, AKR-
1B10 expression is induced in the airway epithelium of cig-
arette smokers and by cigarette condensates (74). Therefore,
AKR isoforms involved in the formation of PAH-o-quinones
could be etiologically important in lung tumorigenesis.

Anticancer drugs

Cancer drug resistance is a sophisticated issue in cancer che-
motherapy and often leads to therapeutic failure. To date,
many cancer resistant mechanisms have been described, and
metabolic inactivation is one of the major causes (75). Sev-
eral AKR proteins such as AKR1B1 have been reported to
be overexpressed in human tumors and can efficiently reduce
the carbonyl group of xenobiotics to a less active alcoholic
form (76). It is understood that some antitumor agents con-
tains carbonyl groups, such as the C13 ketonic group in anti-
biotics anthracyclines; therefore, upregulated AKR proteins
can induce tumor drug-resistance towards the agents bearing
a carbonyl group.

Anthracyclines such as daunorubicin and doxorubicin are
widely employed as chemotherapeutic agents for leukemia,
lymphoma, and breast, uterine, ovarian and lung cancers.
These compounds contain a C13 ketonic group and thus are
potential substrates of several AKR proteins, including AKR-
1A1, AKR1B1, AKR1B10 and AKR1C1–4 (75, 77). It has
been reported that the resistance of cancer cells to dauno-
rubicin is associated with AKR1B1 and AKR1C2 expression
(76, 78). Inhibition of AKR1B1 enhanced the cytotoxic
effects of daunorubicin and doxorubicin in tumor cells (79).
Similarly, mytomycin (MMC) containing active carbonyl
groups is also a substrate of AKR1B1 and exposures of
HepG2 cells to MMC induce AKR1B1 expression and cell
resistance (80). In addition, oracin, 6-w2-(2-hydroxyethyl)-
aminoethylx-5,11-dioxo-5,6-dihydro-11H-indeno w1,2-cx iso-
quinoline, is a new anticancer drug which is currently in
Phase II clinical trials. Pharmacokinetic studies have reveal-
ed that oracin undergoes metabolic inactivation by carbonyl
reduction catalyzed by the AKR1C subfamily, leading to
drug resistance of cancer cells (81, 82).

AKRs can also play a positive role in chemotherapy.
Cyclophosphamide is an active anticancer agent that is met-
abolically activated by cytochrome P450-mediated hydrox-
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Figure 3 Involvement of AKR1B proteins in oxidative stress
signaling.
Growth factors, such as FGF, PDGF, IGF, HGF, and cytokines
induce intracellular oxidative stress that leads to lipid peroxidation,
producing unsaturated carbonyls such as HNE and glutathione con-
jugates (e.g., GS-HNE). Both HNE and GS-HNE are efficiently
reduced by AKR1B1 or AKR1B10 to alcoholic forms that activate
protein kinase C (AKC)/nuclear factor-kB (NF-kB) signaling, pro-
moting cell growth and proliferation. Therefore, AKR1B proteins
could be a mediator of reactive oxygen species (ROS)-mediated
signaling cascade.

ylation. The activated intermediate spontaneously breaks into
a phosphamide mustard and acrolein. The former is the main
antitumor effector by inducing the alkylating aziridinium
species, whereas acrolein contributes to the dose-limiting
side effect of cyclophosphamide, such as hemorrhagic cys-
titis. AKR1B1 and AKR1B10 efficiently catalyze the detox-
ification of acrolein and thus can improve the tolerance of
patients to cyclophosphamide (41, 83).

Human AKRs in carcinogenesis

Elevated AKR expression has been found in various human
tumors and could serve as a biomarker, such as AKR1B10
in smoking-related lung cancer. Although with limited under-
standing, it is undoubted that the study on the role of AKRs
in tumor development and progression, as well as therapeu-
tics, has become an emerging hotspot.

AKR1B1

AKR1B1 is overexpressed in liver, breast, ovarian, prostate
and colorectal cancers (58, 59, 84). Owing to its broad sub-
strate specificity to xenobiotic carbonyls, such as lipid per-
oxides and antibiotic antitumor agents, AKR1B1 can pro-
mote cancer cell survival and growth by eliminating cyto-
toxic carbonyls and inducing drug resistance. It has been
reported that AKR1B1 regulates tissue necrosis factor (TNF)-
a-mediated rat vascular smooth muscle cell (VSMC) growth
(85). Inhibition of AKR1B1 by small molecule inhibitors pre-
vents high glucose- and TNF-induced activation of E2 trans-
cription factor (E2F-1) and cyclin-dependent kinase (cdk)-2
and the expression of G1/S transition regulatory proteins,
such as cyclin D1, cyclin E, cdk-4, c-myc, and proliferative
cell nuclear antigen. The TNF-a-induced nuclear factor-kB
(NF-kB) activation through the PKC pathway is blocked by
AKR1B1 inhibitors in these cells (58, 60). A similar effect
was observed in Caco-2 colon cancer cells, where AKR1B10
inhibitors attenuated fibroblast growth factor (FGF)- and
platelet derived growth factor-induced cell growth through
inhibition of the COX-2/PGE2 pathway (59). Therefore,
AKR1B1 could be a mitogenic modulator in growth factor-
and inflammatory cytokine-triggered pathways.

Growth factors such as FGF, platelet-derived growth factor
(PDGF), insulin-like growth factor (IGF), hepatocyte growth
factor (HGF) and angiotensin, as well as cytokines such as
TNF-a and IL-2, are inducers of oxidative stress that triggers
toxic lipid peroxidation, producing unsaturated carbonyls,
such as HNE. HNE can be conjugated with GSH to form
GS-HNE. Both HNE and GS-HNE are efficiently converted
by AKR1B1 to alcoholic forms. Exposures of VSMCs to
HNE, GS-HNE or reduced GSH-1,4-dihydroxynonane,
results in increase of E2F-1 expression. Inhibition of AKR-
1B1 prevents HNE or GS-HNE-induced but not GS-1,4-di-
hydroxynonane-induced upregulation of E2F-1 (85, 86). Con-
clusively, AKR1B1 activates proliferative signaling through
the reduced lipid peroxides and/or their glutathione conju-
gates, being a mediator of ROS-initiated cytotoxic signals
(Figure 3).

AKR1B10

AKR1B10, also known as ARL-1, was identified from human
hepatocellular carcinoma (HCC) (39). AKR1B10 is primarily
expressed in the normal colon and small intestine and thus
is also named small intestine aldose reductase (68). AKR-
1B10 is also abundant in adrenal gland (40). Interestingly,
AKR1B10 has been found to be overexpressed in multiple
human cancers, such as HCC, non-small cell lung carcino-
mas, cervical and endometrial cancers, and is recognized as
a novel tumor marker (39, 74, 87–90). In lung cancer,
AKR1B10 expression is significantly associated with ciga-
rette smoking and is involved in the activation of smoke
procarcinogens, such as PAHs (73, 74). Our studies have
shown that AKR1B10 is upregulated with tumorigenic trans-
formation of human mammary epithelial cells and stabilizes
ACCA, promoting fatty acid synthesis (10, 54).

AKR1B10 could contribute to cancer development and
progression via several mechanisms. First, AKR1B10 is an
efficient a,b-unsaturated carbonyl detoxicant. These carbon-
yls are highly electrophilic and cytotoxic, and thus their
clearance by AKR1B10 would facilitate cancer cell growth.
Second, AKR1B10 efficiently converts all-trans-retinal to
retinol, depleting signaling molecule retinoic acid that reg-
ulates cell proliferation and differentiation. Third, AKR1B10
is induced by cigarette smoke and activates procarcinogens
PAHs in cigarette smoke, promoting malignant development
of interstitial pneumonia in smokers. Fourth, many antitumor
drugs contain active carbonyl groups, such as daunorubicin.
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Figure 4 Hypothetical model of AKR1B10 in regulating cell growth and survival.
Acetyl-CoA carboxylase-a (ACCA) is degraded through the ubiquitination-proteasome pathway. AKR1B10 blocks ubiquitin-dependent
degradation of the ACCA and thus enhances fatty acid/lipid synthesis, which affects mitochondrial function, oxidative status and lipid
peroxidation of cells. AKR1B10 also reduces electrophilic carbonyls to less toxic alcohol forms, blocking their cytotoxicity.

AKR1B10 could reduce the carbonyl group to less toxic
alcoholic forms, inducing drug resistance to therapeutic
agents (91, 92). Finally, data from our laboratory showed that
AKR1B10, by direct association with ACCA, enhances fatty
acid/lipid synthesis, which is essential for cancer cell growth
and division (Figure 4) (10, 54). Therefore, AKR1B10 could
be involved in various aspects of tumor development and
progression and offer multiple advantages of tumor cell sur-
vival and proliferation, being a potential target for cancer
prevention and treatment.

AKR1C subfamily

Members of the AKR1C subfamily are emerging as impor-
tant mediators of cancer pathogenesis. AKR1C3 expression
is increased in prostate and breast cancers (93–95). AKR-
1C3, also known as 3-HSD or prostaglandin F synthase, is
involved in steroid metabolism, including androgen, desoxy-
corticosterone and progesterone. It is also implicated in pros-
taglandin metabolism and reduction of lipid aldehydes. AKR-
1C3 converts 4-androstenedione to testosterone, progesterone
to 20-hydroxyprogesterone and, to a lesser extent, estrone to
17-estradiol. Targeted AKR1C3 expression increased steroid
conversion in MCF-7 cells and enhanced the cell growth by
three times in response to estrone (96, 97). Therefore, a
proestrogenic status induced by AKR1C3 has been thought
to be a risk factor of breast cancer.

Prostaglandins are possible promoters or growth enhancers
of prostate cancer. In human prostate malignancy, elevated
prostaglandin levels were detected and associated with tumor
advancement. AKR1C3 has 11-ketoprostaglandin reductase
activity and promotes prostate cell growth by converting
PGD2 to 9,11-PGF2a, a proproliferative signaling molecule.
Meanwhile, by producing PGF2a, AKR1C3 blocks the con-
version of PGD2 to 15-deoxy-D12,14-PGJ2a, a potential endo-

genous ligand for PPARg. PPARg activates the transcription
of genes that trigger terminal differentiation and/or apoptosis
(93, 98). Therefore, AKR1C3 acts as a switch to determine
the response of prostate cells to prostaglandin signals.

Although sharing )86% amino acid sequence similarity
with AKR1C3, AKR1C2 seems to have a controversial role
in prostate cancer. AKR1C2 is also upregulated in localized
and advanced prostate cancer, and treatment of PC3-AKR-
1C2 cells with PGD2 increased cell proliferation by activat-
ing the PI3K/Akt pathway (99). On the contrary, another
laboratory found that both AKR1C2 and AKR1C1 expres-
sion in prostate cancer was decreased compared to paired
benign tissues, leading to androgen-dependent cellular pro-
liferation by increased dihydrotestosterone that is eliminated
by AKR1C2 (100).

In addition, AKR1C isoforms were also found to be upre-
gulated dramatically in lung cancer and could be implicated
in lung carcinogenesis by activating environmental pollutant
PAHs to catechol, a carcinogen (71).

Conclusion

AKR proteins are conserved in evolutionary hierarchy of
organisms and are featured with a wide range of substrate
specificity. In the nomenclature system, AKR proteins are
grouped into different family and subfamily groups accord-
ing to the sequence similarity. AKR members that are expres-
sed in human fall into AKR1, AKR6 and AKR7 families;
and these human isoforms play wide pathophysiological
roles, including carbonyl detoxification, hormone metabo-
lism, fatty acid/lipid synthesis, osmolytic regulation, diabetic
complications, procarcinogen activation and anticancer drug
resistance. Growing evidence also indicates that AKRs exten-
sively participate in oxidative stress regulation and nuclear
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receptor signaling (such as prostaglandins, retinoic acid and
steroid hormones). In view of their overexpression in human
tumors, therefore, AKRs could be profoundly implicated in
cancer development and progression, and thus are potential
tumor markers and novel targets for cancer intervention.
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