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Abstract

Increased prevalence of multi-drug resistance in pathogens
has encouraged researchers to focus on finding novel forms
of anti-infective agents. Antimicrobial peptides (AMPs)
found in animal secretions are components of host innate
immune response and have survived eons of pathogen evo-
lution. Thus, they are likely to be active against pathogens
and even those that are resistant to conventional drugs. Many
peptides have been isolated and shown to be effective against
multi-drug resistant pathogens. More than 500 AMPs have
been identified from amphibians. The abundance of AMPs
in frog skin is remarkable and constitutes a rich source for
design of novel pharmaceutical molecules. Expression and
post-translational modifications, discovery, activities and
probable therapeutic application prospects of amphibian
AMPs will be discussed in this article.
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Introduction

The class Amphibia includes three orders: (i) the order Anura
(frogs and toads), 5679 species in 48 families; (ii) order Cau-
data or Urodela (salamanders, newts), 580 species in 9 fam-
ilies; (iii) order Gymnophiona or Apoda (caecilians), 174
species in 3 families. All of the data above is dynamic with
new species continually being discovered.

In the past decades, several bioactive agents including
antimicrobial peptides (AMPs), pharmacological peptides or
peptides with unknown function have been identified from
skin secretions of amphibians (1–3). These agents are impor-
tant to prevent attack from aggressors (4, 5). For example,
batrachotoxin and tetrodotoxin are toxic to predators (6, 7).
Some of the components cause a temporary oral movement
obstacle to predators and provide the opportunity for
amphibians to escape (4).

Compared with the limited predators, widespread microbes
are much more threatening to the survival of amphibians. As
an ancient creature that metamorphose from a juvenile water-
breathing form to an adult air-breathing form which is
capable of living both on land and in water, amphibians con-

stantly expose themselves to various harmful pathogens with
their moist skins. It has been reported that a chytrid fungus
Batrachochytrium dendrobatidis is the main disease-causing
pathogen to amphibians (8).

During the long history of arm race with pathogens,
amphibian skins have evolved several systems to defend
themselves: (i) physical barriers: except for the compact
skins function as a physical barrier to pathogens similar to
other species, mucus glands on the dorsal skins of amphib-
ians secrete copious proteoglycans. These substances aggre-
gate to form polypeptide meshes that cover the entire outer
surface of the skin to form a natural barrier against pathogen
invasion (9). (ii) Adaptive immunity system: including B
cells, antibodies and T cells similar to other vertebrate spe-
cies (10–14). This system in amphibians share the same defi-
ciency with other species: they respond too slowly to the
invasion of pathogens. (iii) Innate immunity system: includ-
ing phagocytes, complement system proteins, interferon sys-
tems, natural killer cells and AMPs. Although all these
components play key roles in the swift killing of invasive
pathogens, a variety of AMPs existing all over the skin sur-
face could work swiftly and directly (3, 10). In addition, a
specific AMP could have broad-spectrum activity against
Gram-positive bacteria, Gram-negative bacteria, fungi and
protozoa. As the first line to defend themselves from path-
ogens, amphibian skin is considered as abundant sources for
AMPs (8).

The first reported AMP from amphibians is bombinin, a
24-residue peptide found from skin secretions of European
frog Bombina variegata in 1969 with antimicrobial and
hemolytic activity (15). Magainins were identified from skin
of Xenopus laevis in 1987 (16, 17). Since then, a large num-
ber of AMPs with diversified structures and activities have
been isolated from amphibians. Until now, more than 500
AMPs were identified from amphibian species. AMPs are
almost exclusively found in Anura, less found in Caudata.
More than 200 AMPs were isolated from Ascaphidae, Bom-
binatoridae, Hylidae, Hyperoliidae, Leptodactylidae, Myo-
batrachidae, Pipidae and Ranidae (18–32).

Granular glands in Anura skin are rich sources of AMPs
but it is not the unique source. Some AMPs are also iden-
tified from gastric mucosa (33), stomach (34) and frog eggs
(35). For example, buforin I and buforin II were isolated
from stomach of the Asian toad Bufo bufo gargarizans (36).

Expression and post-translational modifications
of amphibian AMPs

There are two main glands in the skin of amphibians (the
lipid gland was only found in Phyllomedusa): granular
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glands and mucus glands. They mainly locate in the dorsal
region, but in Xenopus granular glands cover the entire outer
surface. These glands are controlled by sympathetic axons.
Once stimulated, secretions produced within the cell dis-
charge by the rupture of the plasma membrane, thus releasing
the cellular contents into the lumen. AMPs stored in the
granular glands in prepropeptide form will remove the signal
peptide from the precursor and release into the skin surface
in a holocrine manner upon stress and injury (37, 38).

Most AMPs are synthesized as a long protein called pre-
cursors (16). In general conditions, these precursors consist
of three parts: signal sequence, acidic propeptide and mature
AMPs. The signal peptide of a precursor is cleaved off by
an endopeptidase. Then they are transported to granular
glands on the dorsal surface of the amphibian in an inactive
form. Upon appropriate stimulation or injury, the spacer pep-
tide is cleaved by a second endopeptidase and the mature
peptide with activity is secreted from granular glands onto
the dorsal surface (39–41). A third endopeptidase will deac-
tivate these AMPs when they are no longer needed and this
deactivate process takes 5–30 min (42–44). For example,
mature AMP amolop with 18 amino acid residues comes
from a preproprotein with 62 amino acids which contain a
hydrophobic signal peptide of 22 residues followed by an 18
residue acidic propiece which terminates by a typical pro-
hormone processing signal Lys-Arg (45).

To prolong the lifetime of mature AMPs, post-translational
modifications such as C-terminal a-amidation and amino
acid isomerization usually occur (4). C-terminal amidation is
the most common modification in amphibian AMPs. Ami-
dation is a process of C-terminal glycine oxidative decar-
boxylation which can prevent carboxypeptidase cutting,
while providing a hydrogen bond which is required for the
formation of a-helix and add positive charge (33), which
could be responsible for the enhancement of the antimicro-
bial activity of AMP (46). This phenomenon is validated by
AMPs such as brevinin-1, nigrocin and palustrin (24, 47).

Although L-amino acid is most common in naturally
occurring AMPs, some peptides containing D-amino acid
have also been found. These two isomers usually exist at the
same time on the same position of one class of AMPs. This
suggests that conversion of a L-amino acid to its D-isomer is
a novel post-translational process (48). Bombinin H was
found in the skin secretions of Bombina varigata and Bom-
bina orientalis (49). Among them, bombinins H3–H5
include a D-alloisoleucine in the second position and leucine
is also observed at the same position at the same time, but
there is no significant difference between their antibacterial
activities. The D-amino acid could enhance the stability of
peptides when exposed to enzymes (20).

Identification of amphibian AMPs

There are several ways to stimulate the secretion of AMPs
from amphibian skins:

i. injection of adrenaline or noradrenalin: small amounts of
adrenaline and noradrenalin occur naturally in skin

glands. Adrenergic receptor activation induces the con-
tractions of the glandular myoepithelium and outflow of
skin secretion. Injection of adrenaline or noradrenalin
can activate adrenergic receptors and stimulate secretion,
which is suitable for most amphibians.

ii. Physical stimuli: mild electrical stimulation has been
demonstrated to be an effective method to stimulate the
release of amphibian skin secretions even in species
lacking enlarged compact glands (38). Another simple
method to obtain amphibian skin secretions is to press
the granular glands gently so as to milk skin secretions,
which is suitable for amphibians with enlarged compact
glands.

iii. Chemical stimuli: ether has been demonstrated to be
somewhat successful in stimulation of amphibian skin
secretions. Cotton infiltrated with small amounts of ether
loaded in sealed glass beakers will stimulate the secre-
tion of amphibian skins instead of anesthetizing the
animals.

After collection of secretions, classic protein purification
processes are used to obtain AMPs. In addition, the combi-
nation of modern genomics and proteomics was demonstrat-
ed to be an effective method to identify amphibian AMPs,
especially to identify the family of AMPs (50).

Structural characteristics of amphibian

antimicrobial peptides

Except for wood frog (Rana sylvatica) whose skin secretions
contain only a single AMP (brevinin-1SY) (51), other related
species can synthesize and secrete a variety of components
with antimicrobial activities. Li et al. (24) combined pepti-
domics and genomics analyses to study an array of anti-
infection peptides from amphibian skins. In total, 372 cDNA
sequences of AMPs were characterized from a single indi-
vidual skin of the frog Odorrana grahami that encode 107
novel antimicrobial peptides. Those peptides could be organ-
ized into 30 divergent groups, including 24 novel groups.
The diversity in AMP coding cDNA sequences described
here is the most extreme yet for any animal (24).

Length

Most amphibian AMPs are short in length, containing 9–50
amino acid residues (Table 1), whereas a few of them contain
more than 50 residues (52). Temporins, which comprise
between 10 and 14 amino acid residues, were firstly identi-
fied in the skin of the European frog Rana esculenta (18)
and then Rana temporaria (2). Recently, an AMP (odorra-
nain V) containing only 9 amino acid residues was identified
from the frog O. grahami (24). Tigerinins which contain
11–12 amino acid residues are identified from skin secretions
of Indian tiger frog Rana tigerina (53). Some tigerinin-like
peptides are also found from the frog Fejervarya cancrivora,
which lives in sea water (54). The esculentin-1 family
of AMPs containing 46 amino acid residues isolated from
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Table 1 Length of AMPs.

Peptide Source Sequence Length Ref.

Odorranain-N1 Odorrana grahami DEKGPKWKR 9 (24)
Temporin K Rana temporaria LLPNLLKSLL 10 (2)
Temporin H Rana temporaria LSPNLLKSLL 10 (2)
Aurein 1.1 Southern bell frog GLFDIIKKIAESI 13 (65)
Aurein 2.2 Southern bell frog GLFDIVKKVVGALGSL 16 (65)
Aurein 3.2 Southern bell frog GLFDIVKKIAGHIASSI 17 (65)
Bombinin H4 Bombina variegate LIGPVLGLVGSALGGLLKKI 21 (49)
Brevinin-1 Rana brevipoda porsa FLPVLAGIAAKVVPALFCKITKKC 24 (47)
Maximin 1 Bombina maxima GIGTKILGGVKTALKGALKELASTYAN 27 (21)
Brevinin-2 Rana brevipoda porsa GLLDSLKGFAATAGKGVL 33 (47)

QSLLSTASCKLAKTC
Gaegurin-2 Rana rugosa GIMSIVKDVAKNAAKEA 33 (70)

AKGALSTLSCKLAKTC
Gaegurin-3 Rana rugosa GIMSIVKDVAKTAAKEA 33 (70)

AKGALSTLSCKLAKTC
Esculentin-2A Rana esculenta GILSLVKGVAKLAGKGLA 37 (1)

KEGGKFGLELIACKIAKQC
Esculentin-2B Rana esculenta GIFSLVKGAAKLAGKGLA 37 (1)

KEGGKFGLELIACKIAKQC
Esculentin-1A Rana esculenta GIFSKLAGKKIKNLLISGLKNVGK 46 (1)

EVGMDVVRTGIDIAGCKIKGEC
Esculentin-1B Rana esculenta GIFSKLAGKKLKNLLISGLKNVG

KEVGMDVVRTGIDIAGCKIKGEC 46 (1)

R. esculenta could be the longest amphibian antimicrobial
peptides (1).

Charge

Because of their amino acid compositions which are rich in
lysine, arginine and histidine, most of the AMPs are posi-
tively charged (Table 2). This feature is considered to be
essential for antimicrobial activities of AMPs by binding
them with the negatively charged phospholipids in the
membrane of pathogens (55). Aurein 1.2 from Australian tree
frogs has a net positive charge of q1 (43). Temporin A from
R. temporari and tigerinin 1, 2, 3 from R. tigerina have a
net positive charge of q2. Temporin L from R. temporaria,
magainin 2 from Xenopus laevis, dermaseptin S1 from Phy-
lomedusa sauvagil bears a net positive charge of q3 (56).
Brevinin-1 from Rana brevipoda, ranateurin 4 from R. tem-
poraria and aurein 1.1 from Australian tree frogs have a net
positive charge of q4. Gaegurin 5 from Rana rugosa and
ranalexin from Rana catesbeiana have a net positive charge
of q5. Esculentin-1 from R. esculenta has a net positive
charge of q6. Interestingly, owing to the three aspartate res-
idues and lack of basic amino acid residues, Maximin H5
(ILGPVLGLVSDTLDDVLGIL-NH2) belong to the maxi-
mins H family which was isolated from the toad Bombina
maxima and exhibits a unique anionic characteristic. Maxi-
min H5 represents the first example of potential anionic
AMPs discovered from amphibians, and it has a limited anti-
microbial spectrum. Among all the tested bacteria, only the
Gram-positive strain Staphylococcus aureus was sensitive to
maximin H5. The results provide the first evidence that anio-
nic AMP exist naturally (22).

Amino acid composition

Most of the AMPs contain more than half of the hydrophobic
amino acids (57). These amino acid residues are believed to
be essential for the membrane-disruptive effects by cluster-
ing together. Together with the clustering hydrophilic amino
acids, these amino acid compositions usually make the
AMPs an amphipathic molecule, which is considered impor-
tant for their antimicrobial functions (43).

Secondary structure of antimicrobial peptides

Based on secondary structure, amphibian AMPs are classi-
fied into three broad families w(3, 19, 37, 58–62), Table 3x:

i. the first group of AMPs contain a-helix structure.
Magainins (16), ranatuerin-2, temporin families (63, 64)
and dermaseptins (25) adopt an amphipathic a-helial
conformation, either in aqueous solution or upon inter-
action with membranes of microorganisms (64). How-
ever, ranatuerin-1, aurein 1.2 and caerin 1.1 from
Australian frog adopt random coil arrangement in aque-
ous solution and an a-helical structure in membrane
mimetic environments (65–69). The commonly used
membrane mimicking solvent is varying mixtures of
water and trifluoroethanol (30–50%) or detergent
micelles (44, 69).

ii. The second group of AMPs includes those that contain
a single intracellular disulfide bond. In this group, b-
hairpin-like peptides were mostly observed. One specific
feature of b-hairpin-like peptides is the C-terminal cyclic
region which is called ‘Rana box’ (70). It is formed by
two cysteine residues at the C-terminal linked by a disul-
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Table 2 Net charge of AMPs.

Peptide Source Charge Ref.

Maximin H5 Bombina maxima -3 (21)
Aurein 2.1 Southern bell frog Litoria aurea and Litoria raniformis 1 (65)
Aurein 2.2 Southern bell frog Litoria aurea and Litoria raniformis 1 (65)
Aurein 2.6 Southern bell frog Litoria aurea and Litoria raniformis 1 (65)
Aurein 2.5 Southern bell frog Litoria aurea and Litoria raniformis 1 (65)
Aurein 3.3 Southern bell frog Litoria aurea and Litoria raniformis 2 (65)
Aurein 3.1 Southern bell frog Litoria aurea and Litoria raniformis 2 (65)
Maximin 3 Chinese red belly toad Bombina maxima 3 (21)
Aurein 3.2 Southern bell frog Litoria aurea and Litoria raniformis 4 (65)
Brevinin-1Ea Edible frog Rana esculenta 4 (1)
Odorranain-B1 Odorrana grahami 5 (4)
Brevinin-2TC European common frog 6 (3)
Odorranain-E1 Odorrana grahami 6 (24)
Buforin II Bufo bufo gargarizans 7 (122)
Odorranain-K1 Odorrana grahami 8 (4)
Buforin I Bufo bufo gargarizans 13 (26)

Table 3 Structure of AMPs.

Peptide Source Structure Ref.

Temporin A Rana temporaria Helix (2)
Ranalexin Bull frog, Rana catesbeiana Helix (90)
Magainin 2 African clawed frog Xenopus laevis Helix (16)
Dermaseptin-S1 Sauvage’s leaf frog Helix (25)
Dermaseptin-S2 Sauvage’s leaf frog Helix (25)
Temporin D Rana temporaria Helix (2)
Temporin H Rana temporaria Helix (2)
Odorranain-B1 Odorrana grahami Helix (24)
Bombinin-like peptide 1 Bombina orientalis Helix (60)
Brevinin-1Ea Edible frog Rana esculenta Bridge (1)
Brevinin-1Eb Edible frog Rana esculenta Bridge (1)
Brevinin-1 Rana brevipoda porsa Bridge (46)
Brevinin-2 Rana brevipoda porsa Bridge (46)
Gaegurin-1 Korean wrinkled frog Rana rugosa Bridge (69)
Tigerinin-1 Rana tigerina Bridge (52)
Tigerinin-2 Rana tigerina Bridge (52)
Brevinin-1SY Wood frog Rana sylvatica Bridge (49)

fide bridge (33). The size of Rana box is different
although heptapeptide ring is common. Tigernins from
Indian frog R. tigerina have an intracellular disulfide-
linked ring containing 9 amino acid residues called nona-
peptides (23). Japonicin-2 contains an 8 amino acids ring
named octapeptide and ranatuerin-2 family contains
hexapeptide formed by 6 amino acid residues (23). There
are several AMP families from O. grahami containing
variable disulfide-bridged segments at the C-terminus.
The disulfide-bridged segment in the groups odorranain-
A, -J and odorranain-B, -T, is composed of 12 and 11
amino acid residues, respectively, and the size of the
disulfide-bridged segment in the group odorranain-U is
13 amino acid residues (24). Main members belonging
to this group are brevinins from Japanese pond frog R.
brevipoda porsa (47), tigerinins from Indian frog R. tige-
rina (53), ranalexins from American pig frog Rana gry-
lio and green frog Rana clamitans (71, 72), amolopin P1

from skin secretions of the rufous-spotted torrent frog,
Amolops loloensis (45). Acyclic brevinin-1 peptides iso-
lated from skin of the Ryukyu brown frog Rana okina-
vana lack C-terminal cyclic region but still show
antimicrobial activity against Escherichia coli and S.
aureus. It is speculated that the C-terminal region is not
essential for bactericidal activity (73).

iii. The third group contains peptides with unusual structure
or amino acids compositions (74). A linear, cationic
AMP kassinatuerin-1 isolated from the skin of African
frog Kassina senegalensis exhibits no sequence similar-
ity with previous characterized AMPs from amphibian
skins (51). A family of AMPs (amolopin) with unique
sequence (NILSSIVNGINRALSFFG) is found in the
torrent frog, A. loloensis (45). In addition, in skin secre-
tions of frog Phyllomedusa distincta, a particular hete-
rodimer AMP with two peptide chains linked by
disulfide bonds is also discovered (75).
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Therapeutic applications of amphibian AMPs

AMPs are key effectors in innate immunity. They not only
kill pathogens directly but also rapidly. AMPs can take effect
more than 100 times faster than other protective proteins
such as IgM on killing pathogens (48). Mixed peptides
secreted from amphibian skins are more effective than indi-
vidual peptides (14). In other words, AMP reservoirs of
amphibian skin contain weaponry with various structures
aimed at different pathogen spectra, and act synergistically
(76). Some AMPs have a broad spectrum of activity not only
on bacteria but also on fungi, protozoa (77) and cancer cells
(6, 21, 78, 79). Several positively charged amphipathic
AMPs also show antiviral activity in vitro on enveloped
viruses such as HIV, herpes simplex virus (HSV) and vesic-
ular stomatitis virus.

Antibacterial activities

Many AMPs display broad-spectrum activity on Gram-neg-
ative bacteria, Gram-positive bacteria, protozoa and fungi,
whereas some AMPs preferentially kill only some of them.

Brevinin-1, brevinin-2, esculentin-1 and esculentin-2 AMP
families, which are found in many Ranidae amphibians,
exhibit high potency on a wide range of Gram-positive bac-
teria, Gram-negative bacteria and fungi (1, 23, 64, 80). For
example, esculentin-1 showed strong antimicrobial activities
against a range of human pathogens such as E. coli, S.
aureus, Pseudomonas aeruginosa and Caenorhabditis albi-
cans. The minimum inhibitory concentration (MIC) is very
low (-1 mM), indicating that the esculentin-1 family have
very high sterilization potency.

Ranalexin from R. catesbeiana is active against Gram-pos-
itive bacteria such as methicillin-resistant S. aureus, Staph-
ylococcus epidermidis and Streptococcus pneumoniae but is
inactive against some Gram-negative strains such as Pseu-
domonas aeruginosa and Proteus mirabilis (81). Temporin
shows preferential activity against Gram-positive bacteria
such as S. aureus and Enterococcus faecium (2). Caerin 4.1
preferentially kills Gram-negative bacteria (43) and the
reported MIC against E. coli is 20 mg/ml.

Antiviral activity

Anti-herpes activity Magainins I and II exhibit an inhib-
itory effect towards HSV-1 and HSV-2 at a concentration of
50 mg/ml, which is non-cytotoxic for epithelial cells (82, 83).
Modified brevinin-1 also show significant antiviral activity
against HSV-1 (84).

Anti-HIV activity Some AMPs are effective on inhibition
of growth or replication of enveloped viruses. Maximin 3
from skin secretions of Chinese red belly toad B. maxima
show anti-HIV activity in vitro, which provides the first evi-
dence that some of these linear cationic AMPs can have anti-
HIV potency. It is important to note that maximin 3 possesses
a unique histidine C-terminus, which might contribute to this
unique biological activity (21). Other amphibian AMPs such

as caerin 1.9, caerin 1.1, dermaseptin S4 and maculatin 1.1
are found to inhibit human immunodeficiency virus infection
at low concentrations (10–20 mM) with limited toxicity to
the target T cells (9, 85–87). Caerin 4.1 lyses Pasteurella
haemolytica, which causes swine fever (43). The AMP data-
base could be a good resource for the discovery of novel
anti-HIV drugs (88).

Anticancer activity

Aurein 1.2 first isolated from the Australian bell frog Litoria
raniformis does not lyse erythrocytes. However, at the same
concentration, it kills most human cancer cells; it is also the
smallest peptide which has both antibiotic and anticancer
activity (65, 89). Caerin 1.1 identified from the magnificent
tree frog Litoria splendida and green tree frog Litoria cae-
rulea, has an IC50 value of -10-6 M against all the major
human cancer types (44). Citropin 1.1, gaegurins, magainin
2 and analog peptides of magainins are selectively cytotoxic
to human cancer cells (17, 79, 89, 90).

Temporin L isolated from the skin of the European red
frog R. temporaria induces necrosis of three different human
tumor cell lines (56). Magainins and their analogs have been
found to be able to lyse hematopoietic tumor and solid tumor
cells with little toxic effect on normal blood lymphocytes
(78, 79). The mechanism of anticancer activity of magainins
is suggested to be targeting of cell membranes by a non-
receptor pathway (79).

Antiprotozoal activity

At concentrations of 10-6 M, caerin 1.1 kills nematodes. It is
also effective on the malaria parasite Plasmodium falciparum
(MIC 10 mg/ml) (44). Ranalexin isolated from R. catesbeia-
na tadpoles has lower activity against intestinal parasite
Cryptosporidium parvum, whereas the synergism between
ranalexin and conventional antibiotics can enhance antipro-
tozoal activity (91, 92). Magainin 2 could disrupt membranes
of Paramecium caudatum, Amoeba proteus and Euglena
gracilis (16).

Hemolytic activity

Many amphibian AMPs exert hemolytic activity. For exam-
ple, brevinin-1E from R. esculenta has a HC50 value (the
concentration producing 50% hemolysis) -1 mM and the
HC50 value of magainin 2 is as high as 1000 mM (1, 93). As
a result, discovery of less toxic antimicrobial peptides either
from natural resources or designed from current AMP data-
bases is somewhat necessary for the pharmaceutical appli-
cation of AMPs.

Reproduction toxicity

Sperm immobilization Maximins 1 and 3 isolated from
B. maxima have sperm immobilization activity. They can
inhibit 80% of sperm motility at a concentration 100 mg/ml
within 30 min (21). At the same concentration, magainin also
show similar sperm immobilization ability (94). In addition,
two synthetic magainins, magainin A and magainin G, show
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spermicidal activity by altering the plasma membranes of
sperms (95).

Embryo-fetal toxicity Mystkowska and colleagues have
reported that magainin on its own is highly embryotoxic
(96). Its embryotoxicity is enhanced by cyclodextrin, albu-
min, H2O2 and acidification. Magainin-2-amide killed 100%
of cells at the minimal concentration of 250 mM within
30 min (96). Magainin-2-amide can exert its embryotoxicity
by interacting with negatively charged, non-cholesterol-con-
taining cell membranes of preimplantation embryos.

Mast cell degranulation and histamine release

Mast cells are secretory cells necessary for specific and
innate immunity, allergy and inflammation processes. His-
tamine release is responsible for allergic symptoms and also
as a result of mast cell degranulation. Many amphibian
AMPs have been found to induce mast cell degranulation.
For example, brevinins-ALb and temporins-ALa identified
from A. loloensis at a concentration of 100 mg/ml were
found to promote mast cell degranulation by 17% and 87%,
respectively (31). Kassinakinin S, esculentin-1SEa, brevinin-
1SE and ranaruerin-2SEa are also reported to be inducers of
histamine release (97). Brevinins-Alb and temporins-Ala also
show histamine release activity. At a concentration of 100
mg/ml, they induced histamine release by 59.2% and 65.8%,
respectively (31).

Amphibian peptides that mimic neurotransmitters

and mammalian hormones

Many peptides isolated from frog skin are insulin secreto-
gues. Some of them have potential for development of phar-
maceutical agents especially for the treatment of type 2
diabetes. Plylloseptin-L2 isolated from the skin secretion of
Lemur leaf frog Hylomantis lemur has a significant effect on
insulin release from the rat BRIN-BD11 clonal b cell line at
a concentration of 3 nM and it does not cause cytolysis at a
concentration of 3 mM (98). Brevinin-2GUb which belongs
to the Brevinin-2 family can increase the release of insulin
from BRIN-BD11 cells (139% of basal rate) at a concentra-
tion of 100 nM, whereas at a concentration of 3 mM the basal
rate increased to 373% (99).

Gaegurin-6 is isolated from the skin secretion of Korean
frog R. rugosa. With an a-helical conformation and two cys-
teine residues it can significantly upregulate insulin secretion
in pancreatic b cells in a Ca2q influx-dependent manner. The
study also showed that these structures are crucial for its
biology activity (100). Ocellatin L2 and plasticin-L1 are
devoid of antimicrobial activity but both have the ability to
release insulin from BRIN-BD11 cells (101). Pseudin-2 iso-
lated from the skin of the paradoxical frog Pseudis paradoxa
is a cationic and a-helical peptide that can stimulate insulin
release from the BRIN-BD11 clonal b cell line without
hemolytic activity (102). Exendin-4 isolated from venom of
a reptile has been used as therapeutic agent for type 2 dia-
betes (103, 104). In addition, Temporin and Brevinin-1 are
also well known insulinotropic peptides (105).

Mechanism of action

Some AMPs have a selective cytotoxic effect on bacteria
instead of on animal cells. This feature can attribute to the
negatively charged phospholipids in the bacterial membrane
(106). In animal cell membranes, components such as cho-
lesterol can also facilitate stabling membrane structure (10).
As with most other innate immunity effectors, bactericidal
effects mediated by amphibian AMPs are rapid. Regardless
of how quickly they are, certain steps described below are
widely adopted.

i. Attraction. When face microbes, positively charged
AMPs are driven by electrostatic attraction and aggre-
gate on the bacterial membrane surface which is nega-
tively charged. In Gram-negative bacteria, the negatively
charged phosphate groups of phospholipids and lipopo-
lysaccharides (LPS), which are located in the outer
membrane, play key roles in this process, whereas in
Gram-positive bacteria negatively charged teichoic acid
in cell walls play an important role (107).

ii. Attachment. Before entering cells, AMPs have to cross
a variety of envelopes formed by capsular polysacchar-
ides. These envelopes include Gram-negative bacteria
LPS, Gram-positive bacteria teichoic acid, as well as the
thick peptidoglycan layer. Eukaryocytes are seldom tak-
en as target, as they have less negative charges (107).
Although many reports have indicated that AMPs use
electrostatic attraction to interact with the bacterial
membrane, some of them use the passive transport sys-
tem to enter microbial cells and complete the membrane
rupture process within the cell. Details can be found in
a review article by Otvos (108).

iii. Transmembrane pore-forming mechanisms. When the
peptide/lipid ratio exceeds a certain threshold value, the
AMPs in the bacterial membrane will form pores. Three
models including the barrel-stave model (107, 109, 110),
carpet-like model (111) and toroidal pore model (93,
107) are proposed for the pore-forming mechanism.
• Barrel-stave model. AMPs aggregate on the cytoplasm

with the hydrophobic part interacting with the cyto-
plasm and the hydrophilic parts forming penetrating
channels. The channel formed by alamethinin has an
internal diameter of approximately 1.8 nm and an
external diameter of approximately 4.0 nm (112, 113).
The thickness of the wall is approximately 1.1 nm,
which is equal to the diameter of the helix form of
alamethinin. This reminds us that the channel is formed
by 3–11 parallel helix form alamethinins penetrating
the cytoplasm vertically (114, 115).

• Carpet-like model. AMPs such as ovispirin rest on the
surface of the cytoplasm (116–118). When the con-
centrations increase, they destroy the cytoplasm in a
detergent manner and form micelles. As the concentra-
tion increases, temporary holes are formed and AMPs
out of the cytoplasm will influx (107). Inner and outer
AMPs of the cytoplasm react with each other and make
the micelles dissociate from the cytoplasm and make
a hole on it (110).
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• Toroidal pore model. This model is used to explain
how AMPs such as magainins (114), protrgrins (119)
and melittins (120, 121) work. The helix form of
AMPs slot into the cytoplasm and cause the outer layer
of the cytoplasm to bend continually until hydrophilic
channels are formed by AMPs, and the hydrophilic
parts of the lipids (120). Compared with the channels
formed in the barrel-stave model, they are a little big-
ger and the size is always unstable (107, 114). The
inner diameter is approximately 3.0–5.0 nm and the
external diameter is approximately 7.0–8.4 nm. Each
channel is formed by approximately 4–7 magainins
and 90 lipid molecules (122–124).

iv. Intracellular killing. Although pore-forming and disrup-
tion of the bacterial cell membranes is considered as the
main reason for the direct killing of bacteria by AMPs,
some reports show that AMPs can hit multiple targets in
the bacterial cytoplasm similar to conventional antibi-
otics (46). AMPs aimed at cytoplasm targets are likely
to inhibit the synthesis of important compounds for bac-
teria survival, such as DNA, RNA or some crucial intra-
cellular proteins (55). Where AMPs persistently take
effects, target cells could not metabolize properly, thus
resulting in cell death.

Design strategy of amphibian AMPs

Although some of the AMPs from amphibians have been
demonstrated to be powerful on pathogens, especially some
clinical strains and resistance by pathogens rarely occurs,
they are too sensitive to trypsin-like enzymes and some side
effects such as hemolysis or cytotoxic effects usually occur
(125). As a result, design of more stable and more target-
specific AMPs is somewhat necessary for the application of
AMPs. Several strategies will be discussed below.

Modification of amphibian AMPs to resist trypsin

Most of the AMPs from amphibians contain one or more
positive charged amino acid residues (Arg or Lys), which are
sensitive to trypsin-like proteases (125). Thus, AMPs with
trypsin inhibitory capability should be excellent candidates
for novel clinical antibiotics.

A disulfide-bridged undecapeptide (CWTKSIPPKPC)
loop derived from an AMP (named ORB-O) of O. grahami,
which is named trypsin inhibitory loop, is found to contain
potential trypsin-inhibitory capability. It is considered as the
smallest serine inhibitor. Different trypsin inhibitors or
AMPs can easily be designed on the basis of such a loop.
Small bifunctional peptides that have both trypsin inhibitory
and antimicrobial activities could be designed. The applica-
tion of developing novel oral or other anti-infective agents
will soon be the focus of attention. ORB-O without the disul-
fide-bridged loop in its structure had neither protease inhi-
bition activity nor antimicrobial activity, implying that the
disulfide-bridged undecapeptide (CWTKSIPPKPC) loop has
an essential role in both activities (80).

Substitution of amino acids in AMPs

Some amino acids play key roles in the biologic activity of
AMP. Substitution of certain amino acids could effectively
alter the net charge, hydrophobicity or secondary structure
of AMPs so as to enhance the antimicrobial activity, or
reduce the side effects of hemolysis, etc. In this regard, suit-
able AMPs applicable for clinical use could be designed
(126–129).

Modification of charge Net charges of AMPs have a
key effect on their antimicrobial abilities. Increasing positive
charge of AMP is a strategy to improve antimicrobial poten-
cy. Ranatuerin-1 (SMLSVLKNLG10KVGLGFVACK20INKQC)
isolated from the skin of the bullfrog R. catesbeiana contains
broad-spectrum antimicrobial activity (63). Substitution of
Lys to Asn8 increased positive charge and potency (between
2-fold and 8-fold) against tested strains (S. aureus, P. aeru-
ginosa and C. albicans) with only a very small increase in
hemolytic activity (130). The same situation is also observed
in tigerinin. Substitution of threonine by lysine increased
both positive charge and antimicrobial potency (131).

Change of hydrophobicity and a-helicity There are
three structural domains in ranatuerin-1, including a-helix
(residues 1–8), b-sheet (residues 11–16) and b-turn (resi-
dues 20–25). The substitution of Asn22 by Ala increased its
hydrophobicity and a-helicity and resulted in a little change
of antimicrobial ability but hemolytic activity was markedly
increased (130). The data indicated that hydrophobicity play
key roles for hemolytic activity.

Change in the disulfide loop As mentioned above,
many amphibian AMPs contain a C-terminal disulfide loop.
Some reports suggest that the heptapeptide disulfide loop is
not essential for antimicrobial activity. For example, acyclic
brevinin-1 containing no disulfide ‘Rana box’ does not lose
antimicrobial activity (73). In contrast to the heptapeptide
disulfide loop, the nonapeptide disulfide loop in tigerinins is
essential for their antimicrobial abilities; replacement of cys-
teine residue by leucine results in loss of most of their anti-
microbial abilities. This substitution destroys the b-turn
structure. It seems that b-turn is essential for antimicrobial
activity (131).

Amino acid isomerization Isomerization of amino acids
in AMPs can improve the stability of peptides when exposed
to enzymes. In addition, some reports indicate that isomeri-
zation of amino acids could improve the antimicrobial activ-
ities of AMPs (132).

Expert opinion

The growing resistance of pathogens to antibiotics has
encouraged researchers to focus on finding novel forms of
anti-infective agents. AMPs found in animal secretions are
components of host innate immune responses and have sur-
vived eons of pathogen evolution. Thus, they are likely to
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be active against pathogens and even those that are resistant
to conventional drugs. AMPs are considered as powerful and
rapid broad-spectrum novel antibiotics effective on drug
resistant pathogens. These advantages compared with con-
ventional antibiotics make them perfect candidates for novel
therapeutic agents. With the design strategy mentioned
above, several promising compounds have been discovered.

Outlook

Magainins are membrane-active peptides that exert antimi-
crobial activity by forming ion channels in microbial cell
membranes that lead to cell death. Based on these features,
two magainin mimetics called MSI-751 and MSI-774 are
obtained. They are tested with anaerobia oral pathogens such
as Porphyromonas gingivalis, Fusobacterium nucleatum,
Actinobacillus actinomycetemcomitans, Eikenella corrodens,
Prevotella loescheii and Prevotella intermedia. The results
of the antimicrobial assay show that all of the periodontal
pathogens are sensitive to MSI-751 and MSI-774 with MIC
values of 2.5–40 mg/l and 10–80 mg/l, respectively (133).

MSI-78 (trade name: Pexiganan) is a synthetic amphipa-
thic, a-helical peptide magainin derivative antibiotic, con-
taining 22 amino acid residues (134). MSI-78 has anti-
microbial activity against local infections caused by both
Gram-positive and Gram-negative bacteria, including some
infections caused by pathogens resistant to conventional anti-
biotics. MSI-78 is considered as a novel antibiotic that is
effective on many skin infections, such as impetigo, diabetic
foot, surgical wound infections and bed sores. In testing
polymicrobial diabetic foot ulcers, MSI-78 showed equal
efficacy with oral ofloxacin (121).

In the skin secretions of the Phyllomedusa genus, an AMP
family named dermaseptins is well studied and has been
demonstrated to be a promising candidate for designing nov-
el antimicrobial drugs owing to their great affinity to the
plasma membrane of human red blood cells (46). Some ana-
logs of dermaseptin have been demonstrated to be effective
on the treatment of infections involved in blood circulation.
By reaching the target microorganisms, they could kill them
directly but no toxic or only less toxic effects are observed
on eukaryotic cells. This is the so-called ‘affinity driven
molecular transfer’, which means drugs could be bind to pep-
tides with high affinity and sent directly to the designated
location where the effects take place. Obviously, the advan-
tages of these applications are rapid and receptor-independ-
ent (52).

Highlights

• AMPs are produced by many living organisms, such as
animals and plants. Among them amphibian skin is a rich
source of AMPs.

• AMPs have broad-spectrum activities that can defend
against pathogens including Gram-positive and Gram-
negative bacteria, viruses and fungi.

• Some AMPs have been demonstrated to be effective on
pathogens that are drug-resistant to conventional anti-
biotics and thus are potential candidates for therapeutics.

• Because their fundamental structures have been clearly
researched, AMPs could be designed and reformed
artificially.

• Currently, some new drugs based on AMPs have been
created and take effects in the treatment of human disease.
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