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Abstract

Recent studies suggest that homeostasis of lipid metabolism
is crucial for the function of various immune cells. Oxygen-
ated derivatives of cholesterol (oxysterols) are well-known
regulators of lipid metabolism and have diverse functions,
such as inhibition of cholesterol synthesis, efflux of intra-
cellular cholesterol, synthesis of cholesterol esters, and acti-
vation of liver X receptors (LXRs). In this review, we
introduce novel roles of the oxysterol receptors LXRs in the
immune system, including regulation of inflammatory
responses, T cell expansion, immunoglobulin production,
and antitumor responses. We also discuss lipid-mediated sig-
naling as a potential target for treatment of immune diseases.

Keywords: adaptive immunity; innate immunity; liver X
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Introduction

Oxygenated derivatives of cholesterol (oxysterols), such as
7-a-hydroxycholesterol, 7-ketocholesterol, 24S-hydroxycho-
lesterol, 25-hydroxycholesterol, 27-hydroxycholesterol, and
22R-hydroxycholesterol, are produced from cholesterol
through auto-oxidation (1). In addition, enzymatic processes
have been reported to occur during oxysterol production. For
example, cholesterol 7-a-hydroxylase converts cholesterol to
7-a-hydroxycholesterol. The enzymes 24S-hydroxylase, 25-
hydroxylase, and 27-hydroxylase contribute to biosynthesis
of 24S-hydroxycholesterol, 25-hydroxycholesterol, and 27-
hydroxycholesterol, respectively, starting with cholesterol (2,
3). However, oxysterols are present in very low concentra-
tions in plasma, and for that reason, it has been difficult to

investigate their biological functions in vivo for many years.
In the 1990s, Mangelsdorf and colleagues employed an in
vitro binding assay to reveal that oxysterols are ligands for
the liver X nuclear receptor (LXR) (4, 5). Currently, 25-
hydroxycholesterol, 27-hydroxycholesterol, 22R-hydroxy-
cholesterol, and 24S, 25-epoxycholesterol are thought to be
naturally occurring ligands bound by LXR.

LXRa (NR1H3) and 3 (NR1H2) were identified from a
liver cDNA library in 1994 and 1995. Further studies dem-
onstrated that LXRo expression is restricted to liver, lung,
spleen, adipose tissue, kidney, intestine, and adrenal glands.
In contrast, LXR[3 expression is ubiquitous. As summarized
in Table 1, murine leukocytes (excluding macrophages) pre-
dominantly express LXRB but not LXRa (6, 7); however,
human CD4 T cells and B cells express both LXRa and
LXRp (Table 1) (8, 9). This discrepancy can be explained
by an autoregulatory loop involving LXRa: namely, pro-
moter of the human LXRa gene, but not of the murine
LXRa gene, has an LXRa binding region, and binding of
LXRa to its own promoter induces transcription of the gene
(10).

Recently, Chen et al. used triple-knockout mice deficient
in cholesterol 24S-hydroxylase, 25-hydroxylase, and 27-
hydroxylase to show that these naturally occurring oxysterols
act as ligands for LXR in vivo (11). Interestingly, recent stud-
ies of LXR-null mice demonstrated that LXR activation via
oxysterols plays a role in regulating the innate and adaptive
immune responses. Mice lacking LXRs exhibit defective
clearance of intracellular bacteria and apoptotic cells
(12—14), age-dependent lymphoid hyperplasia, and systemic
autoimmune diseases (6, 12), as well as increased antitumor
responses (15). In addition to LXR activation, however,
oxysterols have LXR-independent biological functions, such
as inhibition of HMG CoA reductase (16—18) and synthesis
of cholesterol esters (19-22). In the following section, we
will discuss how oxysterols contribute to the regulation of
the immune response.

Roles of LXR activation for macrophage
functions in innate and adaptive immunity

Macrophages play a crucial role in innate immunity against
bacterial infection. Joseph et al. reported that activation of
LXR in macrophages with a synthetic ligand represses the
expression of proinflammatory genes such as interleukin
(IL)-6, IL-1B, COX-2, and iNOS in response to bacterial
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Table 1 LXR expression in immune cells.

LXRa LXRB
T cells (6) * +
B cells (6) + +
Macrophage (6) + + ++
Mast cells (7) + +
Human CD4* T cells (8) + +
Human B cells (9) + +

infection or lipopolysaccharide (LPS) stimulation, indicating
a link between LXR signaling and inflammatory responses
(23). This LXR-dependent repression of proinflammatory
gene expression in macrophages is mediated through the
suppression mechanism known as transrepression (24, 25).
In contrast to these findings, upon LPS stimulation in the
absence of synthetic LXR ligands, the levels of proinflam-
matory gene expression induced in LXRaf** and LXR-
of” macrophages were comparable (23). These results
suggest that basal LXR activation via endogenous oxysterols
in macrophages is insufficient to repress inflammatory
responses against pathogens. Nevertheless, LXRa™ but not
LXRB” mice show high susceptibility to the intracellular
pathogen Listeria monocytogenes (LM) (14). This suscepti-
bility is due to the fact that LXRa” macrophages fail to
express the scavenger receptor SPa/AIM, which protects
LM-infected macrophages from apoptosis and promotes the
killing of LM cells. These findings indicate distinct functions
for LXR isoforms in macrophage antimicrobial activity and
apoptosis.

Clearance of apoptotic cells by macrophages is essential
for maintenance of the immune system. A-Gonzalez et al.
recently showed that basal LXR-mediated signaling in mac-
rophages is necessary for expression of mer receptor tyrosine
kinase (Mer) which is crucial for clearance of apoptotic cells
via phagocytosis (12). LXRaf” mice thus exhibit a selective
defect in phagocytosis of apoptotic cells and bring about sub-
sequent anomalous proinflammatory responses. Consequent-
ly, a breakdown in self-tolerance, production of auto-
antibodies, and development of autoimmune glomerulone-
phritis are observed in aging LXR-deficient mice. Figure 1
illustrates the roles of endogenous ligand-mediated LXR
activation in macrophage function. In the next section, we
introduce the molecular mechanisms responsible for LXR-
mediated gene activation and transrepression.

Mechanisms of LXR-mediated gene activation
and transrepression

LXRs associate with retinoid X receptor (RXR). These hete-
rodimers bind to specific DNA sequence, termed LXR
response element, located in promoter regions of target genes
such as ATP-binding cassette transporters. LXR response
element consists of direct repeats of hexanucleotide (AGGT-
CAN4AGGTCA) separated by four nucleotides (26, 27). The
heterodimers can be activated by ligands for LXRs or RXR
(5). Activated-LXR:RXR heterodimer can act as transcrip-

Spa/AIM
Cell survival

Endogenous
LXR ligands

N s

Phagocytosis of
apoptotic cells

Figure 1 Endogenous ligand-mediated LXR activation in macro-
phages promotes survival and phagocytosis.

Basal LXR activation via naturally occurring oxysterols is required
for the expression of Spa/AIM and Mer in macrophages. LXR{
activation is dispensable for Spa/AIM expression. Spa/AIM pro-
motes cell survival by protecting microbially infected macrophages
from apoptosis. Mer is crucial in the clearance of apoptotic cells
via phagocytosis.

tional suppressors by co-operating with co-repressor com-
plexes such as nuclear receptor co-repressor (NcoR) and
silencing mediator of retinoic acid and thyroid hormone
receptors (SMRT). Under inflammatory conditions, the co-
repressor complex is degraded via the proteasome pathway
in the absence of LXR ligand. In the presence of LXR ligand,
LXR is SUMOylated and protects the co-repressor complex
from the proteasomal degradation system (28). LXR-medi-
ated stabilization of co-repressor complex results in repres-
sion of inflammatory gene expression.

LXRgB-dependent regulation of murine T cell
proliferation in response to antigens

It has been reported that some oxysterols, including 25-
hydroxycholesterol effectively inhibit T cell proliferation in
response to mitogenic or antigenic stimulation (29-31).
However, the reduced proliferative ability of T cells is not
fully reversed by the addition of mevalonate, indicating that
oxysterol-mediated inhibition of HMG CoA reductase also
contributes to the inhibition of T cell proliferation. One
recent study employing the synthetic LXR ligand T0901317
demonstrated that ligand-mediated LXR activation reduces
T cell proliferation following antigen stimulation (32).
Together, these findings raise the possibility that LXR acti-
vation regulates the proliferative capacity of lymphocytes.
Bensinger and colleagues reported that LXR signaling cou-
ples sterol homeostasis to antigen-specific T cell proliferation
(6). T cell activation induces expression of the oxysterol-
metabolizing enzyme sulfotransferase (SULT)2B1, resulting
in repression of LXR signaling leading to cholesterol efflux
and upregulation of (sterol regulatory element binding pro-
tein) SREBP signaling which induces cholesterol synthesis
(Figure 2). SULT2BI catalyzes the transfer of sulfate groups
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Figure 2 LXR signaling couples sterol homeostasis to T cell proliferation.
In resting T cells, oxysterols suppress intracellular cholesterol levels by activating LXRB-dependent cholesterol efflux and inhibiting SREBP-
dependent cholesterol synthesis. Upon antigen stimulation, expression of SULT2B1, which can inactivate oxysterols, is upregulated. Inac-
tivation of SULT2BI-sensitive oxysterols results in downregulation of cholesterol efflux and upregulation of cholesterol synthesis.
ABCG-deficient T cells are unable to proliferate in response to stimulation.

to oxysterols, resulting in inactivation of the oxysterols. The
inactivation of oxysterols, in turn, results in downregulation
of ABCGI, an LXR-regulated transporter responsible for
cholesterol efflux. Downregulation of ABCGI-mediated
cholesterol efflux is indispensable for T cell proliferation.
Indeed, ABCG1”" T cells fail to proliferate following mito-
genic stimulation. As mentioned in the introduction, murine
T cells predominantly express LXRB. LXRB” mice, there-
fore, display lymphoid hyperplasia and enhanced responses
to antigenic stimulation. Given that (i) murine B cell prolif-
eration in response to antigenic stimulation is reduced in the
presence of several synthetic LXR ligands or 22R-hydroxy-
cholesterol (6) and (ii) older LXRaB” mice exhibit a marked
increase in the frequency and absolute numbers of
CD19%B220" B cells in their spleens and lymph nodes (12),
it can be concluded that murine B cell proliferation is reg-
ulated by LXR signaling. In contrast, it has been reported
that the proliferation of human and murine B cells induced
by combined stimulation with anti-CD40 antibody and cyto-
kines is not altered in the presence of T0901317 (9). Further
investigations will be required to elucidate the role of LXR
activation in B cell proliferation in response to different
stimuli.

A possible role for LXR activation in
immunoglobulin production by B cells

The number of circulating auto-antibodies that recognize
nuclear antigens (e.g., double-stranded DNA and histones) is
drastically increased in older LXRa”" mice. It seems that

the increased number of B cells in LXR-deficient mice can
contribute to the excess production of immunoglobulin.
However, recent studies have suggested that LXR signaling
directly regulates immunoglobulin production in B cells.
Chang et al. reported that T0901317 inhibits polyclonal IgG
secretion from murine B cells stimulated with homocysteine
(33). Moreover, Heine et al. demonstrated that the same syn-
thetic LXR ligand induces the expression of CD23, a low-
affinity IgE receptor, in murine B cells and suppresses
production of IgE induced by LPS and IL-4 (Figure 3) (9).
Together, these findings demonstrate that induced LXR sig-
naling affects immunoglobulin production. Recently, the
Russell group addressed the in vivo roles of endogenous 25-
hydroxycholesterol in immunoglobulin secretion from
murine B cells (34). Cholesterol 25-hydroxylase-deficient
mice exhibit a marked increase in serum IgA but not IgGl,
IgG2b, 1gG3, or IgM, demonstrating that 25-hydroxycholes-
terol negatively regulates IgA production. Treatment of
splenic B cells with 25-hydroxycholesterol specifically inhib-
its IgA class switch recombination in response to costimu-
lation with LPS, IL-5, and TGF-B1 by reducing the
expression of activation-induced cytidine deaminase (AID)
(Figure 3). Despite these findings, it is unclear whether LXR
activation is responsible for 25-hydroxycholesterol-mediated
suppression of IgA class switching for a few reasons. First,
treatment of B cells with two other LXR-activating oxyste-
rols, 22R-hydroxycholesterol and 24S-hydroxycholesterol,
does not suppress IgA class switching (34). Moreover, the
synthetic LXR ligand T0901317 fails to repress AID expres-
sion or IgA production in murine B cells (9).

In vivo, macrophages are a major source of 25-hydroxy-
cholesterol. Upon LPS stimulation, the expression of choles-
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Figure 3 Regulation of immunoglobulin class switching in B cells.

Activation of LXR with synthetic ligands inhibits IgE production from B cells by inducing CD23 expression, whereas LXR activation does
not alter AID expression and IgE class switching. In contrast, 25-hydroxycholesterol, a naturally occurring oxysterol, suppresses AID
expression and IgA class switching. It is unclear whether LXR activation is involved in 25-hydroxycholesterol-mediated suppression of
AID expression.

terol 25-hydroxylase in macrophages is upregulated and ~ LXR activation and dendritic cell-mediated

newly synthesized 25-hydroxycholesterol is released from  antitumor immune response

the cells (35). Importantly, activation of innate immunity

could increase de novo synthesis of 25-hydroxycholesterol, Dendritic cells take up antigens and migrate into the draining
which in turn modulates the expression pattern of immuno- lymphoid organs, where they prime naive T cells to become
globulin isotypes in B cells. effector T cells. In the case of antitumor immunity, killer T
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Figure 4 Tumor cells escape from antitumor immune responses by activating LXR signaling.

Tumor cells produce oxysterols that are sensitive to SULT2B1. These oxysterols activate LXRa in dendritic cells. CCR7 expression on
dendritic cells is subsequently reduced in an LXRa-dependent manner. Dendritic cells lacking CCR7 fail to migrate into lymphoid organs
such as draining lymph nodes, resulting in abrogation of naive CD8 T cell priming and effector cell expansion.
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cells that recognize specific tumor-derived antigens attack
their target cells. The migration of dendritic cells requires
expression of CC chemokine receptor-7 (CCR7), the lym-
phoid-homing receptor, on the cell surface (36). Recently,
Villablanca et al. showed that tumor cells escape the anti-
tumor immune response by activating LXR signaling in den-
dritic cells, which results in reduced dendritic cell CCR7
expression (Figure 4) (15). Various tumor cells, including
melanoma (14/21; 66%), colon (2/4; 50%), lung (2/5; 40%),
and kidney tumors (3/8; 37.5%), produce oxysterols. These
tumor-derived oxysterols effectively downregulate CCR7
expression in dendritic cells in an LXRa-dependent manner.
Consequently, tumor growth is decreased in chimeric mice
transplanted with bone marrow from LXRa-deficient mice.
In addition, mice injected with tumor cells expressing
SULT2B show reduced tumor growth, suggesting that
SULT?2B-sensitive oxysterols play an important role in the
mechanism of tumor immunoescape.

Expert opinion and outlook

As reviewed above, naturally occurring LXR agonists such
as oxysterols are essential for proper regulation of the
immune system. We believe that these findings confer novel
insights into functional relevance of lipid-mediated signaling
and immune responses. We also discuss the potential value
of artificial enhancement of LXR activation by oxysterols or
synthetic ligands as a therapeutic strategy for treatment of
immune diseases. In many animal models, administration of
natural or synthetic LXR agonists results in the amelioration
of glomerulonephritis (12), allergic dermatitis (23, 37, 38),
experimental autoimmune encephalomyelitis (32, 39), and
type II collagen-induced arthritis (40) (Table 2). Taken
together, these studies raise the possibility that the regulation
of LXR activation is a promising therapeutic target for treat-
ment of these immune disorders. With regard to collagen-
induced arthritis, however, the opposite conclusion has been
reached by other researchers (41). Thus, further studies will
be required to assess the therapeutic potential of LXR acti-
vation in autoimmune and inflammatory diseases. Addition-
ally, the route of administration is crucial for the clinical
application of LXR ligand because systemic administration
of LXR ligands causes hypertriglycemia by inducing the
expression of lipogenic genes in the liver (42). The discovery

Table 2 Inhibitory effects of LXR agonists on immune diseases.

Disease LXR ligands

T0901317 (37), GW3965 (37, 38)
22R-hydroxycholesterol (38),
25-hydroxycholesterol (38)
GW3965 (12)

T0901317 (32, 39)

Allergic dermatitis

Glomerulonephritis
Experimental autoimmune
encephalomyelitis

Arthritis GW3965 (40)

of tissue- or cell-type specific LXR ligand [such as YT-32,
a small intestine-selective LXR agonist (43)] will therefore
prove the importance of LXR ligands as therapeutics. How-
ever, recent studies suggest that actions of LXR ligand differ
between human and murine inflammatory responses (44, 45).
Unlike murine cells, LPS response in human macrophages
and mature dendritic cells is enhanced by pretreatment with
LXR ligand. In human cells, LXR activation results in
enhancement of TLR4 expression and NF-«kB signaling.
Such species-specific regulation of gene expression is
dependent on the presence of the LXR response element on
the human TLR4 gene promoter. This element does not pre-
sent in the promoter of the murine TLR4 gene. These find-
ings clearly indicate complexity of LXR signaling. Thus, we
consider that findings obtained from animal models need to
be carefully assessed.
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