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Abstract

All currently known structures of proteins together define
‘protein fold space’. To increase the general understanding
of protein dynamics and protein folding, we selected a set
of 807 proteins and protein domains that represent 95% of
the currently known autonomous folded domains present in
globular proteins. Native state and unfolding simulations of
these representatives are now complete and accessible via a
novel database containing over 11 000 simulations. Because
protein folding is a microscopically reversible process, these
simulations effectively sample protein folding across all of
protein fold space. Here, we give an overview of how the
representative proteins were selected and how the simula-
tions were performed and validated. We then provide exam-
ples of different types of analyses that can be performed
across our large set of simulations, made possible by the
database approach. We further show how the unfolding sim-
ulations can be used to compare unfolding of structural ele-
ments in isolation and in different structural contexts, using
as an example a short, triple stranded [3-sheet that forms the
WW domain and is present in several larger unrelated
proteins.

Keywords: dynameomics; molecular dynamics; protein
folding; transition state; WW domain.

Introduction

The Protein Data Bank (PDB) (1) currently contains around
65 000 protein structures and is likely to continue to expand.
The coordinates deposited in the PDB are static, average
structures of proteins. Although these structures provide an
abundance of information, they only represent a small part
of the full story. In reality, proteins are dynamic entities that
sample an ensemble of conformers in their folded (native)

states. This dynamic behavior of proteins is crucial for
understanding their function, their interactions and perhaps
even their evolution (2—4). Obtaining a detailed picture of
the dynamics of a protein can therefore lead to new insights.
An example is provided by the relationship between cyto-
chrome b5 dynamics and formation of complexes with other
cytochrome proteins: molecular dynamics (MD) simulation
of the native state dynamics of this protein revealed cyclical
formation of a cleft giving access to the buried heme group
(5). We hypothesized that the cleft serves as a site for binding
of its protein partners, providing a more protected site for
electron transfer. Formation of the cleft and binding of cyto-
chrome ¢ to the cleft were confirmed later by experiment
(6, 7). Thus, thermal motion can be crucial for molecular
recognition and MD simulations can reveal important excur-
sions from the static, average structures. For many proteins
it is not yet understood how their movements affect their
function, as well as how dynamics is related to the three-
dimensional fold.

Apart from being important for the function of proteins,
dynamics is also involved in the process of adopting the
native three-dimensional fold and will determine available
pathways of unfolding and misfolding. Folding and unfold-
ing play an important part in the life cycle of a protein (e.g.,
adopting their functional form, translation through the cell
and degradation), as well as the life cycle of an entire organ-
ism (e.g., aging and disease). Increased understanding of the
protein folding/unfolding process can provide important rules
to help predict structure from sequence, a major challenge to
translate the ever-growing data from genome sequencing
efforts into biologically relevant information. Understanding
of protein unfolding will not only help to understand the
many cellular processes that involve partial unfolding (8), it
can also provide crucial insights into the growing number of
amyloid diseases (9, 10) and the molecular basis of the con-
sequences of amino acid mutations due to single-nucleotide
polymorphisms linked to disease (11). The dynamics of a
protein in its natively folded form provides an important
benchmark for analyzing its unfolding.

Obtaining a detailed picture of the unfolding/folding path-
way of a protein requires structural information on all the
different conformational states involved (native, transition,
intermediate and denatured), as well as the mechanism of
interconversion between these states. Experimentally, this
information is difficult to obtain, owing to the transient,
dynamic and heterogeneous nature of partially folded states.
Fundamentally, obtaining structural information on the
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unfolding transition state (the state that defines the main
energy barrier for forming or unfolding the native protein
fold) is particularly difficult. Computer modeling, in partic-
ular physics-based simulations, can help to fill in information
that is difficult or impossible to obtain through experiment
(12). Specifically, all-atom MD simulations in explicit sol-
vent are able to provide the detailed temporal and spatial
resolution needed to understand protein folding/unfolding
(13). By combining such simulations with experiment, the
pathways of individual proteins can be mapped accurately
and in great detail (14-16).

To characterize protein dynamics and unfolding more gen-
erally, we established a large-scale, high-throughput simula-
tion project, named Dynameomics (www.dynameomics.org)
(17-19). The main aim of this project is to simulate the
native state and unfolding of a set of proteins and protein
domains that represent all the known independent folding
units that occur in globular proteins. In addition to the set of
individual proteins that together represent protein fold space,
we are simulating multiple members of certain fold-families,
simulations of the GGXGG set of pentapeptides (20) and
simulations of proteins with single-nucleotide polymor-
phisms that can provide insight into the causes of genetic
disease (19). In total, we have over 11 000 simulations of
over 2000 different protein and peptide systems totaling
more than 390 s of simulation time and over 4X 108 struc-
tures, 10* times more than in the PDB (note that precise
numbers are not given as we are constantly running and
loading simulations into the database).

Given the vast amount of data produced in MD simula-
tions, one of the biggest challenges is data management and
organization. Consequently, we developed a novel hybrid
relational/multidimensional database (12—14) that scales well
with increasing simulations and is optimized for efficient
queries across large datasets (200 terabytes and growing). By
collecting physically realistic simulations of protein dynam-
ics and unfolding in a structured database, we can perform
analyses across all simulations and specific subsets thereof.
Although the Dynameomics project is, to our knowledge, the
only such project of this scale, fold coverage and database
complexity, others are also now collecting and organizing
biomolecular simulation data (21).

In this overview of the Dynameomics project, we describe
our simulation data from a biophysical perspective, omitting
the technical details involved in storing and accessing large
simulation datasets. We first outline the origin of the con-
sensus domain dictionary from which we assign fold repre-
sentatives, or targets for simulation, and the protocols that
were used to perform, characterize and validate the MD sim-
ulations. We illustrate different types of analyses that can be
used to characterize large collections of native state simula-
tions. Then, as a further example of what is made possible
by our comprehensive database of simulations, we focus on
the mechanism of unfolding of the B-hairpin structural motif.
B-Hairpin unfolding in the context of the minimal WW
domain (essentially a double hairpin) is compared with the
unfolding of double hairpin motifs in unrelated protein folds,
where this motif occurs in different structural contexts.

Selection of protein fold representatives

The goal of the Dynameomics project is to capture protein
dynamics and unfolding across all known independently
folding (or autonomous) protein domains. It is, however, not
feasible to perform simulations of all protein structures
deposited in the PDB. Apart from the fact that it is not fea-
sible, it is also not necessary, as both the PDB and nature
contain many structures that have very similar folds, and
many PDB entries contain more than one independent fold-
ing unit. The aim therefore is to select a set of proteins and
protein domains that is representative of all folds that occur
in the structures in the PDB. To this end, we make use of
three well-known protein fold classification systems, each
with a different philosophy and methodology to distinguish
fold similarity: SCOP (22), CATH (23) and Dali (24). We
have devised a procedure to (i) take all domains in the PDB
that are classified by at least two of the three systems; (ii)
look up and match their classifications; (iii) filter the
domains by sequence (<95% sequence identity); and (iv)
identify what we call ‘metafolds’ as domains that share at
least two of the three classifications (18, 25) (Figure 1). We
call the result of this procedure a Consensus Domain
Dictionary (CDD) and the latest version (2009) consists of
1695 metafolds across a total of 80 062 domains or 13 345
non-redundant domains (25). All metafolds, including all
domains and their classifications, are available at www.
dynameomics.org.

The next step is to select metafold representatives for sim-
ulation (Figure 1). First, metafolds that are not truly inde-
pendently folded domains were filtered out, including: (i)
domains that extend through domain-swapped dimers; (ii)
domains that are part of a complex and show a large buried
interface; (iii) domains with secondary structure elements
that continue into other domains (i.e., a -strand forming a
B-sheet with a strand from another domain); and (iv)
domains that lack regular secondary structure elements and/
or were unstructured peptides. A surprisingly large number
of metafolds falls into this category (672 metafolds), calling
into question their use in bioinformatics studies addressing
globular protein properties [see Figure 1 here and Figure 5
in reference (25) for examples]. Then, the quality of the
experimentally determined structure was taken into account:
structures with gaps extending more than seven residues and
structures determined by X-ray crystallography with a reso-
lution >3 A were deemed insufficiently accurate for simu-
lation. Including a recently retracted structure (1 BEF), 107
metafolds (representing 2% of the non-redundant domains)
were rejected in this step. Because we aim to simulate folds
occurring in globular proteins in water, we also omitted 27
metafolds that only occur in transmembrane regions.

Of the remaining metafolds (889), we did not simulate
those with obligate cofactors other than Zn**, Ca** and
heme. The cofactors in these domains, totaling 57 metafolds,
representing <2% of the non-redundant domains, were often
major structural elements (Figure 1). We also excluded 11
metafolds with domains containing over 450 residues. For
the remaining 821 metafolds, we selected representative



Dynameomics: protein dynamics and unfolding 337

PDB
[ SCOP ] [ CATH ] [ Dali ]
| |
Matching domains Sequence filtering

Consensus Domain Dictionary

80 062 total 13 345 non-redundan! domains

Gaps =3 residues

Multiple co-factors

Mo stable native state

MNon-

>450 residues

Figure 1 Selection of autonomous fold representatives for simulation.

First, a ‘Consensus Domain Dictionary’ was defined by matching domains between different fold dictionaries (SCOP, CATH and Dali) and
filtering for sequence identity. Thereafter, clustering identified 1695 ‘metafolds’, which represent all currently known protein structures (25).
Several of these folds are not self-contained [672], only exists in membrane proteins [27] or contain non-protein cofactors that contribute
significantly to the protein fold or did not have well-tested parameters for simulation [57]. Others were not suitable for simulation with our
standard protocols due to large parts of unknown structure [107], large size [11] or unstable simulation (i.e., poor starting structure) [14].
(Each reason for rejecting a metafold for simulation is illustrated by an example.) This resulted in a set of 807 metafolds for which fold
representatives were simulated, analyzed and collected in the Dynameomics database. Native state simulations of the Top 100 most populated

folds are publicly available at our website (www.dynameomics.org).

structures for simulation. After simulating the 821 targets,
the native states of 14 metafolds proved to be unstable and
no other suitable representatives could be found (see discus-
sion below).

Our full set of simulated protein domains, representing
807 metafolds and 10 848 non-redundant domains (95% of
the autonomous folded domains), was ranked by the non-
redundant domain population of their metafolds, i.e., fold-
representative 1 (twitchin, an immunoglobulin-like 3-sand-
wich) ‘represents’ 1279 non-redundant domains in the PDB,

whereas metafolds 502—807 contain only one structure. Con-
sequently, there is a sharp drop-off in coverage of domains
(Figure 2), with the first six representatives covering 30% of
the known, autonomous, globular protein domains and the
Top 100 representatives (for which native state simulations
are publicly available on the Dynameomics website) cover
72%. In the selection of representatives for metafolds with
multiple domains, we preferred domains with biomedical rel-
evance or with experimental folding studies available. Our
representatives cover a wide range in size (29-417 residues),
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Figure 2 Dynameomics fold space.

(Top left) Cumulative percentage of all 13 345 non-redundant domains in the metafolds. (Bottom left) Log of the non-redundant population
of each metafold. (Right) Metafold representatives of the top six metafolds. Structures are shown in ribbons colored in rainbow from red
to blue. Metafold rank and name, along with the protein name are listed below each structure.

function (enzymes, enzyme inhibitors, transcription factors,
structural proteins) and are derived from 218 source organ-
isms [see ref. (19) and www.dynameomics.org for more
details].

Protocols for simulation and analysis

To sample the native state dynamics of all representative pro-
teins, we performed MD simulations at room temperature
(298 K) (17). To obtain information on the folding/unfolding
of domains, we use high-temperature MD simulations start-
ing from the experimentally determined structure (26).
Although simulations of protein folding (from extended or
denatured states) are now possible for certain small, fast-
folding proteins, it remains very challenging, both method-
ologically and computationally, and approximations that can
affect the folding pathway are often necessary (27). Folding
simulations are therefore not suitable for the high-throughput
project described here. Fortunately, previous simulation stud-
ies have shown that protein folding is a microscopically
reversible process, i.e., the unfolding pathway is essentially
the same as the folding pathway both at a single temperature
and comparing high temperature and quenched refolding
(28, 29). In addition, previous studies have shown that the
unfolding process is largely insensitive to changes in tem-
perature and that raising the temperature merely accelerates
the process and the same conformational states are visited in
simulations at different temperatures (16, 28, 30). Conse-
quently, the use of high temperature is a reasonable choice
for our high-throughput simulation effort. Furthermore, it

allows us to run multiple simulations for each representative,
which can be used to capture the average properties of states
along the unfolding pathway (31).

To sample the unfolding pathway and the denatured state,
we have performed at least two simulations of all 807 fold
representatives for 51 ns at 498 K. To obtain additional sam-
pling of the early unfolding events, including the transition
state, we performed at least three additional short simulations
(=2 ns). Because simulation at high temperature will rapidly
cause significant conformational changes, it is important to
sample the native state dynamics as a reference. For all our
807 representatives, we therefore performed at least one sim-
ulation of 51 ns or more at a temperature of 298 K. Prepa-
ration and simulation (at least six simulations for each
representative) was performed according to a fixed protocol,
as described previously (17). In brief, we obtain the starting
structure from the PDB, add missing atoms, side chains and/
or residues if necessary, perform a short energy minimization
and solvate the structure in water (using the experimental
density for 298 K or 498 K). All atoms are explicitly rep-
resented using fully flexible parameters for the protein as
defined in our force field (32), with the flexible three-center
water model (33). Our in-house modeling package, in lucem
molecular mechanics (ilmm), was used for all calculations
(34).

Once simulations were complete, each trajectory was char-
acterized through an extensive set of analyses. Broadly, these
analyses serve to identify gross structural changes, monitor
changes in secondary structure, determine the number of
contacts between protein atoms, measure the solvent acces-
sible surface area (SASA) of the protein, etc. For a compre-
hensive list of analyses performed see (17).
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Validation of native state simulations

The simulations at 298 K are designed to sample the native
state dynamics of the protein folds. As the selected fold rep-
resentatives should be stable independent folded domains,
we first assessed the stability of the proteins. This stability
assessment was performed by calculating the structural
deviation from the starting structure and fluctuation about
the mean structure. Because conformational changes and
flexibility in large loops or tails in the structure will influence
these measurements significantly, we took these measure-
ments only over the ‘core’ of the protein. Of our original
821 representatives, 19 were considered unstable by these
metrics. All 19 started from older NMR structures (19). For
five of these 19 metafolds alternative crystal structures were
available and they were stable by MD.

We now compare the resulting 807 native state simulations
to experimental data for further validation. Pairwise distance
restraints obtained from Nuclear Overhauser Effect (NOE)
crosspeaks are particularly informative in this respect. Pre-
viously, we reported on NOE comparison from a set of 27
proteins in our simulation set (17), yielding an overall NOE
restraint satisfaction of 92% (based on 28 504 NOE
restraints). There are now NOE lists available for 117 of our
targets from the BioMagResBank (35). To remove contra-
dictory NOEs, we used the parsed and filtered constraints as
present in the Filtered REstraint Database (36). A total of
148 580 NOEs were obtained, averaging 13.6 NOEs per
residue.

Comparison of these NOE data with our simulations
revealed an average NOE restraint satisfaction per fold-rep-
resentative of 91%. As expected, satisfaction of short-range
constraints (i.e., i —>7<2) was higher than that of long-range
constraints (i —>i>15). In general, the agreement between MD
and experiment is good. For example, for the engrailed
homeodomain (representative for the three-helical bundle
fold, rank 5) and ubiquitin (representative of the [3-grasp
fold, rank 8), we used the available crystal structures as a
starting point for simulation (I ENH and 1 UBQ, respec-
tively), and NMR data are also available. In both cases, the
crystal structure satisfied fewer NOEs than the average sat-
isfaction of the simulation, indicating how MD simulation
moved the crystal structure closer to the solution ensemble
probed experimentally.

Analysis of native state ensembles

The Dynameomics database provides an organizing frame-
work, a repository and a variety of access interfaces for the
data stored in it: the CDD, the coordinates obtained through
MD simulation and the related analysis data or metadata
(19). The database was designed to be a uniform, scalable
and reliable data warehouse, making it possible to perform
queries across data from thousands of simulations. It essen-
tially is a hybrid database model, partly a relational database
and partly a multidimensional on-line analytical processing
database, which can be queried using the structured query

language (37, 38). Together with the comprehensive set of
simulations and analysis data collected in the database, this
setup enables comparisons across all protein folds and sub-
sets thereof. For example, the 807 different metafolds for
which representatives are present in the database can be sub-
divided into broad classes based on their secondary structure
or their size (Figure 3). Next, we can compare important
summary statistics across the whole set and the different sub-
sets (Table 1). This comparison indicates that there is no
significant bias in our set of simulations; similar values are
obtained throughout.

We have also used additional, non-standard analyses to
investigate properties of the dynamics across the different
fold representatives. One example is the analysis of flexibil-
ity, based on a method outlined by Teodoro et al. (39). This
analysis allows one to obtain a general view of an entire
simulation by showing the primary modes of every atom in
the simulated protein. Using this technique, we can scan the
native state simulations for regions in proteins that show
flexibility that is uncharacteristic of their secondary structure.
This revealed several unusually rigid loops with distinct
properties that can constitute a new class of non-traditional
secondary structure (40). By examining additional simula-
tions of several metafolds, we determined that the backbone
motions of proteins within a metafold are related and cor-
related with sequence similarity.

Apart from information on the dynamics of different pro-
tein folds, the acquired simulation data can also provide a
comprehensive resource for conformational and dynamic
properties of proteins in general. For example, we have cap-
tured the backbone conformations of all three to nine residue
fragments from our simulations and clustered results provide
fragment libraries that cover significant structural diversity,
which are available for download on our website. We also
collected a library of conformational preferences of amino
acid side chains within proteins (as part of our Structural
Library of Intrinsic Residue Propensities, also available
through our website) and analyzed their dynamics (41).

An example of a ‘fold independent’ analysis of our protein
dynamics dataset is the distribution of backbone torsion
angles (i.e., Ramachandran distributions) per residue. In Fig-
ure 4, we show the distribution for Ile residues as an exam-
ple; Ile residues are evenly distributed between a-helices,
B-sheets and other structural elements in our 807 starting
structures. We can compare the distribution from our Dyna-
meomics simulations with those derived from static struc-
tures of proteins [from the ASTRAL-40 dataset (42)] and
those from a sterically unrestrained Ile distribution, based on
exhaustive simulation of Gly-Gly-Ile-Gly-Gly (GGIGG)
pentapeptide (20). Relative to the static data, the Dynameo-
mics data are more dispersed. In addition, there is increased
sampling of the a-left Ramachandran region. The peaks in
the two distributions, i.e., the most dominant structural pref-
erences, are very similar. By contrast, the distribution for the
Ile backbone in the sterically unrestrained pentapeptide
shows marked shifts in the maxima in the «-helical and
3-sheet regions, in addition to increased dispersion. This
discrepancy indicates that in a hydrated, unhindered envi-
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Figure 3 Examples of fold representatives of different structural class and size.
From top to bottom, examples (including PDB code) are given of small (<50), medium (>50, <150) and large (>150) representative
protein domains. From left to right, different structural classes are depicted, as indicated.

ronment the conformations sampled by Ile are significantly
different from those when the residue is found in the context
of a folded protein. Similar results were found for the other
19 naturally occurring amino acids (20).

Using simulation to characterize protein
unfolding: the WW domain

WW domains consist of a three-stranded, antiparallel 3-sheet
(a double hairpin) and have been used as a model system
for B-hairpin folding by both simulation and experiment.
Experimental studies suggest that WW domains have high

amounts of structure in the turn of the first hairpin in the
protein folding transition state (TS) (43—45). These results
have been interpreted to mean that this turn is structured in
the TS and acts as a structured nucleus for hairpin folding.
We used MD simulations to study both the native state
dynamics and the unfolding pathway of the WW domain to
gain a better understanding of the role the first turn plays in
hairpin formation (30, 46).

Multiple simulations of three WW domain proteins
(FBP28, Pinl and hYAP) were performed at 285 K and
298 K to study the native state dynamics (46). Structure in
the first turn of each WW domain fluctuated in all of the
native state simulations, sampling different regions of (¢, {)

Table 1 Average properties of native state simulations grouped by structural class and size.

Subset No. of fold Ca Total Radius of Fraction of Fraction of
representatives RMSD (A) SASA per gyration (A) a-helical B-sheet
residue (AZ) residues® residues®
All 807 29+1.1 71.4124.9 14.44+2.9 0.44£0.27 0.231+0.13
All « 216 2.8+1.2 74.1+£22.3 14.1+3.1 0.71£0.25 0.05+0.02
All B 135 3.1%1.2 68.9120.5 13.8+2.7 0.14£0.13 0.33+0.14
Mixed o/ 408 29+1.0 70.0+25.4 14.8+2.7 0.36£0.17 0.21+0.10
Other 48 2.8%+1.0 76.1+30.7 13.8+3.3 0.35+0.25 0.21+0.15
Small (<50) 29 2.7%£1.0 96.1+35.4 9.7+0.9 0.4910.32 0.26%0.19
Medium (>50, <150) 522 29+1.2 74.2123.6 13.2+1.7 0.45+0.28 0.241+0.14
Large (> 150) 256 3.0%1.0 61.8120.6 17.7+2.2 0.42+0.25 0.20%0.10

“Residues that are participating in (at least) three-residue motifs of secondary structure.
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Figure 4 Ramachandran distributions for Ile in different structural contexts.

Represented are Dynameomics native state simulations, static protein structures and simulation of a sterically unrestrained amino acid (in
a GGIGG pentapeptide). (P, ) space (from -180° to +180°) is divided into 72 bins with a width of 5°. Each bin is colored by fractional
population on a logarithmic scale. From left to right, distributions are shown for (i) all Ile residues in all time samples in the Dynameomics
native state simulation set, (ii) all Ile residues present in the ASTRAL-40 dataset (v1.74) (42) and (iii) all time samples from simulations
of the (acetylated and amidated) pentapeptide Gly-Gly-Ile-Gly-Gly (20).

space, which was confirmed through NMR relaxation exper-
iments and comparison with crystallographic B-factors. Con-
sequently, the first turn of WW domains is flexible in the
native state.

We also performed unfolding simulations of FPB28 WW
domain under different conditions. Initially, simulations were
run at low pH (protonation of Asp and Glu residues) at
333 K, 348 K and multiple simulations at 373 K (30, 44).
As part of the Dynameomics project, unfolding simulations
of FBP28 WW domain (rank 194) were also run at neutral
pH and 498 K. The unfolding pathway was similar across

A FBP28 WW domain

= - 55 -

Ons TS (3.5 ns)

B Cold shock protein B (CspB)

@%/a&

0_0 ns 0.34 ns (TS)

C llADomain of glucose permease

all temperatures and conditions. The third strand was the first
to unfold in the major unfolding pathway at all temperatures
(Figure 5A).

The next step was to identify important states along the
unfolding pathway, such as the TS ensemble, which was
done using a conformational clustering method (15, 47).
Using this method, we identified TS ensembles from all
unfolding simulations of the WW domain. Structure indices,
or S-values, were then calculated to quantify the amount of
both secondary and tertiary structure present at each residue
in the TS ensemble (48). The S-values can subsequently be

AN
}—r\_/ —_— I|A\ __/
14 ns 20 ns
)i'bi
1.0ns 1.5ns

e
| }\J\f\ : e ST B
v A L\',']}gf
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Figure 5 Unfolding of the double hairpin motif in different protein contexts.
(A) Snapshots from a 348 K unfolding simulation of FBP28 WW domain with $1 in red, B2 in green and (33 in blue. (B) Snapshots from
a 498 K simulation of CspB with 1 in red, 32 in green and 33 in blue. (C) Snapshots from a 498 K simulation of IIA domain with 34

in red, B35 in green and (6 in blue.
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compared with the experimental ®-values to validate the
unfolding simulations.

In all cases, the backbone was very flexible for the first
turn of FBP28. Because this turn is flexible even in the
native state, it is not surprising that the backbone angles fluc-
tuate during unfolding. However, this artificially lowered the
S-values in the turn, even in the presence of side chain inter-
actions. Therefore, the tertiary component of the S-values
better represents the amount of structure in the turn in the
TS ensemble (30). The resulting S- and d-values are in good
agreement for FBP28 WW domain, independent of temper-
ature and pH (R of 0.7 between S- and ®-values).

Examining the unfolding simulations of the WW domain
in reverse to study folding revealed that the residues in the
first turn formed a kink, allowing side chain contacts to form
between residues in the first two strands. These contacts
brought the backbones into contact and allowed the forma-
tion of hydrogen bonds, in no particular order, to form the
first hairpin. The native state and unfolding simulations of
the WW domain revealed that the first turn acts as a nucleus
for folding via formation of tertiary interactions that pull the
chain around so that it doubles back, but the precise for-
mation of the structure of the first turn does not drive folding
(30, 46).

Understanding pB-hairpin unfolding within a
larger protein structure

But how applicable are the results of a model system like
the WW domain to the unfolding of -hairpins in proteins?
The WW domain is a convenient model system with both
experimental and simulation data readily available. But the
domain lacks a conventional hydrophobic core and the
opportunity for contacts between the hairpins and other por-
tions of the domain. We mined the Dynameomics database
looking for double hairpin motifs structurally similar to the
WW domain but part of larger proteins. Both the cold shock
proteins in the OB-fold metafold (rank 9) and the ITA domain
of glucose permease in the barrel-sandwich hybrid metafold
(rank 352) have such double hairpin motifs.

The cold shock protein B (CspB), representing rank 9 in
the CDD, has a double hairpin motif at the N-terminus
(strands B1, B2 and 3) with contacts to the core as part of
an OB-fold. CspB has many aromatic contacts within the
double hairpin motif itself. The first event along the unfold-
ing pathway is the separation of the double hairpin motif
from the hydrophobic core and the rest of the protein struc-
ture. After this separation, the double hairpin motif proceeds
to unfold in a manner similar to the WW domain, with con-
tacts lost first between strands 32 and B3, whereas structure
remained in the first hairpin (Figure 5B). Also similar to the
WW domain, there was no order to loss of hydrogen within
a hairpin. Instead, hydrogen bonds were often broken starting
in the middle of a hairpin, with no evidence for a zipper-like
unfolding mechanism.

TS ensembles from the unfolding simulations of CspB
were identified using the conformational clustering method

described above and compared them to the 12 available ®-
values (49, 50) with a AAG_x>0.7 kcal/mol. The average
S-values from four of the five unfolding simulations (one
simulation, run #2, was problematic, unfolding very slowly
which complicated the clustering) of CspB have a correlation
coefficient of 0.7 to the ®-values.

The Dynameomics database also contains simulations of
cold shock protein A (CspA), another member of the OB-
fold (metafold rank 9). CspA shares 60% sequence identity
with CspB, including an aromatic cluster within the double
hairpin motif. The unfolding simulations of CspA follow the
same major unfolding pathway as CspB, with the double
hairpin motif first breaking away from the rest of the protein
followed by loss of structure in the second hairpin.

By contrast, the IIA domain of glucose permease is a larg-
er protein with 13 (-strands and two helices (Figure 5C).
The double hairpin motif (strands (34, B5 and 36) is in the
middle of a larger (3-sheet and the motif lacks the aromatic
cluster seen in the cold shock proteins. Unlike the CspB
unfolding pathway, the double hairpin motif in the IIA
domain maintains contacts to the hydrophobic core and the
other strands in the (3-sheet as it unfolds. Unfolding within
the double hairpin motif varies among the multiple unfolding
trajectories of this protein. In some cases the second hairpin
(strands B5 and 6) maintains contacts longer than the first
hairpin in the motif, whereas other simulations lost all struc-
ture in the double hairpin motif at the same time. Instead,
B-structure was consistently first lost further down in the 3-
sheet in strands 310, 32 and B1 (Figure 5C). Similar to the
hairpin unfolding in the other proteins, there was no consis-
tent order to the loss of hydrogen bonds.

Our existing Dynameomics database of simulations
allowed us to look at the unfolding of a double hairpin motif
in multiple contexts. We can examine the unfolding of the
motif alone, in the model system WW domain, with minimal
contacts to a proteins core in the cold shock protein and as
part of a larger (3-sheet in the IIA domain. In all cases, there
was no evidence for a zipper-like unfolding mechanism,
where hydrogen bonds would be lost starting from the hair-
pin ends, continuing along the strands until the last hydrogen
bonds to break would be in the B-turn. Instead, the loss of
backbone hydrogen bonds within the hairpin varied between
simulations for all of the proteins studied.

This type of analysis made possible by our existing Dyna-
meomics database of simulations increases our confidence in
the results from the WW domain simulations in how the
hairpins themselves unfold. But the unfolding behavior of
the entire double hairpin motif is dependent on the surround-
ing protein context. The cold shock proteins lost contacts
between the double hairpin motif and the rest of the protein
very early in the unfolding pathway, allowing the motif to
unfold in a manner similar to the WW domain. In contrast,
the double hairpin motif in the IIA domain maintains con-
tacts to the rest of the protein as it unfolds and therefore has
a more varied unfolding pathway. The contacts to the rest of
the protein for the IIA domain were dominant over the intrin-
sic unfolding behavior of the double hairpin motif, as reflect-
ed in the WW domain.
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Conclusions and outlook

By defining and simulating a set of proteins representative
of (almost) all known autonomous protein folds, we have
created a bioinformatics resource for protein dynamics and
protein unfolding. Organization of the data in a flexible and
queryable database allows access to this resource, enabling
comparisons of protein dynamics and folding across protein
folds. Our analysis of the large dataset of simulations has
already offered insights into native state protein dynamics,
properties of protein folding transition states and the effect
of environment on the unfolding of structural elements.

Altogether, we believe that our high-throughput simula-
tion effort and storage of these data in an easily accessible
structured repository, which can be linked to other sources
of biological and experimental data, can be a valuable
resource for researchers in biology, biochemistry and bio-
physics. Not only does our database provide high-resolution
information on the dynamics and unfolding of individual
proteins, it will allow the exploration of broader scientific
questions by analyzing dynamics and unfolding across fold
space in a way that was previously impossible or extremely
cumbersome (51). We expect that such exploration will
increase the general knowledge of protein dynamics and con-
tribute to solving ‘the protein-folding problem’. Currently,
native state dynamics simulations of the Top 100 most fre-
quently occurring protein folds are publicly accessible (see
www.dynameomics.org).
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