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Abstract

Most proteases are synthesized in the cell as precursor-
containing propeptides. These structural elements can deter-
mine the folding of the cognate protein, function as an
inhibitor/activator peptide, mediate enzyme sorting, and
mediate the protease interaction with other molecules and
supramolecular structures. The data presented in this review
demonstrate modulatory activity of propeptides irrespective
of the specific mechanism of action. Changes in propeptide
structure, sometimes minor, can crucially alter protein func-
tion in the living organism. Modulatory activity coupled with
high variation allows us to consider propeptides as specific
evolutionary modules that can transform biological proper-
ties of proteases without significant changes in the highly
conserved catalytic domains. As the considered properties of
propeptides are not unique to proteases, propeptide-mediated
evolution seems to be a universal biological mechanism.

Keywords: folding; inhibition; protein interaction; protein
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Introduction

On numerous occasions, proteins substantially change in the
period from their synthesis to degradation. Often they are
synthesized in the cell as precursors; later, these precursors
lose sequence fragments to form new species, each of which
can have different physicochemical and biological properties.
In some cases, the removed fragments direct their proteins
along a secretory pathway. Such fragments share a typical
structural organization and are called signal peptides
wreviewed in Ref. (1)x. Apart from signal peptides, there are
other removed fragments called propeptides, prosequences or
proregions.

To date, different functions of propeptides including four
major functions are recognized. First, proregions can func-
tion as intramolecular chaperones (2) or folding assistants
(3) by determining the three-dimensional structure of their
protein. Second, they can function as inhibitors or activation
peptides by maintaining the proteins (commonly enzymes)
that contain them inactive. Third, prosequences can direct

protein sorting into specific cellular compartments or extra-
cellular space. Fourth, they can mediate the precursor inter-
action with other molecules (such as peptides, proteins, and
polysaccharides) or supramolecular structures (e.g., cell
walls). It should be noted that a single propeptide can
perform several or even all these functions.

At the same time, a growing body of data demonstrates
that propeptides can modulate protein functional activity irre-
spective of their specific role or mechanism of action. They
make it possible to substantially alter biological properties
of proteins without cardinal changes in the major functional
(e.g., catalytic) domains of the molecules. This seems to be
the key property of prosequences that allows propeptides to
regulate protein activity at the post-translational level and to
function as specific evolutionary modules providing for
functional variation of protein molecules.

The range of proteins synthesized as propeptide-contain-
ing precursors is very wide; it includes structural proteins,
hormones, cytokines, various enzymes, and their inhibitors.
wA list of examples, although incomplete, can be found in
Ref. (4).x Proteases are prominent among such proteins, as
their synthesis as a proenzyme is typical of most represen-
tatives of this vast group (5). Thus, it is not surprising that
proteolytic enzymes considered in the current review have
become one of the main models to study the propeptide
functions and mechanisms of action.

Propeptides assisting protein folding

The requirement of the propeptide for the active protein for-
mation was originally demonstrated for subtilisin E (SbtE),
a secretory serine protease of Bacillus subtilis (6). Later,
similar data were obtained for another bacterial secretory
enzyme of the same catalytic type, Lysobacter enzymogenes
a-lytic proteinase (7, 8). To date, the involvement of pro-
sequences in the folding has been demonstrated for a variety
of proteases of all major catalytic types and different organ-
isms (9–40). At the same time, subtilisin (Sbt) and a-lytic
protease (aLP) remain the most thoroughly developed mod-
els that contributed most to our understanding of propep-
tide-assisted folding and the underlying mechanisms.
Prosequence-assisted folding of proteins, largely protea-
ses, has been reviewed previously (3, 4, 41–43), and here
we will briefly consider its main aspects significant for
discussion.

Propeptide-assisted folding means that an unfolded protein
without prosequence cannot form the proper biologically
active three-dimensional structure. This applies to both in
vitro denatured mature proteins and proteins synthesized
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Figure 1 Energy diagrams of protein folding reactions.
Kinetically controlled propeptide-dependent folding in trans (A), in cis (B), and thermodynamically controlled propeptide-independent
folding (C). See text for explanation.

without propeptides in artificial expression systems. An
active protein can be produced after the propeptide is added
to the unfolded protein in trans, i.e., they are not covalently
bound (7, 14, 15, 31, 44–47). For the purpose of complete-
ness, even when the prosequence is a folding assistant, the
protein can fold under specific conditions without the pro-
peptide, although it is usually much less efficient (45,
48–52).

Direct transition of an unfolded protein (U) into the native
catalytically active form (N) in the absence of the propeptide
is thermodynamically forbidden as demonstrated for Sbt,
aLP, and protease B of Streptomyces griseus. This is due to
a higher stability (lower free energy) of the unfolded
conformation than the native conformation in such proteins
(Figure 1) (53–55). In the absence of the propeptide, they
transform into a partially folded stable intermediate (I) with
the conformation similar to that of a molten globule and
lower free energy than N. In addition, the I is separated from
the kinetically trapped N by a high-energy barrier (Figure
1A). After the propeptide (P) is added in trans, the I•P com-
plex is formed and the energy barrier is lowered, which
allows the fast formation of the thermodynamically stable
N•P complex. The metastable native state, protected from the
transition into the unfolded conformation by the same energy
barrier, is formed after the propeptide degradation, which is
usually autocatalytic in active proteases (53, 55, 56). Thus,
the propeptide actually catalyzes the protein folding similar
to an enzyme w‘foldase’ (57)x.

The folding energy profile of the full-length precursor with
covalently bound mature and propeptide parts is similar to
the in trans folding described above (Figure 1B). In the case
of Sbt and aLP, the unfolded precursor (Up) was shown to
transform into the intermediate (Ip) analogous to the non-
covalent I•P complex in the molten globule state. Then, the
Ip is folded into the thermodynamically stable propeptide-
mature part complex (P-N), which enters the native state
after the propeptide is removed (54, 58).

Thus, in all studied cases, the native state of proteases with
the propeptide-mediated folding is not a global energy min-
imum, and the protein folding is under kinetic rather than
thermodynamic control (59). This is advantageous in the fol-
lowing respects. As against a thermodynamically stable state,
the metastable native state with a high energy barrier of tran-
sition to the unfolded form has high rigidity and, conse-
quently, high resistance to harsh environments (54), such as

proteolytic degradation (55, 60, 61), high temperature (62),
or low pH (63).

The transition of protein folding from the thermodynam-
ically controlled propeptide-independent pathway (Figure
1C) to the kinetically controlled propeptide-mediated path-
way is probably an important evolutionary mechanism. This
can be exemplified by bacterial subtilisin-like proteases (sub-
tilases) including proteins both with and without the propep-
tide. Intracellular and extracellular bacterial subtilases have
highly conserved primary structure (more than 50% identity),
similar three-dimensional organization of the catalytic
domains and closely resembling catalytic activities; however,
the intracellular enzymes have no propeptides. A study of
folding of two homologous proteins of B. subtilis, secretory
SbtE and intracellular serine protease 1 (IPS1), has demon-
strated substantially different folding pathways and kinetics.
SbtE folding requires the propeptide to form a kinetically
stable molecule at a local energy minimum. IPS1 folding is
more than a million times faster, does not depend on the
propeptide, and gives rise to a thermodynamically stable pro-
tein (54). Thus, the propeptide makes possible cardinal
changes in the energy state of the active enzyme. This
requires minimum modifications in the catalytic domain that
are largely limited to substitutions of individual surface
amino acids without affecting the hydrophobic core so that
the catalytic activity is retained. Essentially, the propeptide
allows a single protein structure to form two principally dif-
ferent molecules: a high-stability molecule persists in aggres-
sive extracellular environments (42, 61), whereas the other
molecule is probably optimal for the intracellular protein
turnover (54).

In addition, the kinetic stability make possible the mech-
anisms of adaptation to harsh environmental conditions
unavailable for thermodynamically stable proteins, as dem-
onstrated by comparative analysis of the structure and
unfolding behavior of two homologous kinetically stable pro-
teins, acid-resistant Nocardiopsis alba protease A (NAPase)
and neutrophilic aLP. As the unfolded state is not essential
for the stability of kinetically stable proteins, the native state
can be arbitrarily destabilized if the intermediate state is
equally destabilized at the same time. This is not difficult to
realize as demonstrated for the aLP model, as the native and
intermediate forms differ in a small number of interactions
as compared to the unfolded and native forms in thermo-
dynamically stable proteins. Thus, the kinetic stability allows
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rapid evolutionary adaptations to environmental changes and
provides a flexible longevity strategy in harsh environments
(63).

The modulation of protein functional activity by folding-
assistant propeptides can also be mediated by protein
memory (64). This phenomenon consists of different three-
dimensional organization and properties of proteins with
identical sequences but folded in the presence of different
propeptides. Initially, protein memory was discovered in the
study of a SbtE mutant with an Ile(-48)™Val substitution
(position q1 corresponds to the first amino acid in the
mature enzyme) (64). The resulting protein differed from the
wild-type mature enzyme by the secondary structure, ther-
mostability, and substrate specificity. Conformers with prop-
erties different from the wild type were also observed in SbtE
with an Ile(-48)™Thr mutation in the propeptide (65). Such
structural imprinting can be exemplified by cathepsin E, an
aspartyl protease, folded in the presence of the propeptide of
a highly similar cathepsin D. The resulting protein differs
from the wild type in the catalytic efficiency and specificity
towards protein inhibitors (37). We have also demonstrated
different primary substrate specificity of two derivates of
Thermoactinomyces sp. 27a metalloproteinase (66) with
identical primary structure folded with the cognate propep-
tide in cis and in trans (unpublished observation).

As all current examples of protein memory are available
for artificial model systems, the natural significance of this
effect remains unclear. However, analysis of published data
suggests that protein memory can substantially modulate the
functioning of certain proteases in vivo, e.g., mammalian
proprotein convertases (PCs) homologous to bacterial subti-
lases. Enzymes of this group hydrolyze peptide bonds in
many proteins and peptides localized in different subcellular
compartments (67). PC propeptides were shown to assist in
protein folding (35, 68). Point mutations in their prose-
quences can influence the folding and modulate the catalytic
properties up to the inactive enzyme formation (68), which
can affect processing and, consequently, alter the functioning
of the substrate proteins (64).

In summary, folding assistant propeptides can modulate
properties of the cognate proteases. Modifications in such
prosequences can alter the enzyme functions without or with
minor changes in the primary structure of the catalytic
domains, which probably underlies one of the mechanisms
of protein evolution.

Propeptides maintaining the inactive state

of proteins

Maintaining enzymes in inactive state is probably the best
known function of propeptides. It is of physiological signif-
icance because the controlled activation of latent protease
precursors (zymogens) underlies fundamental biochemical
processes such as blood clotting, complement activation, and
digestion. It is hardly possible to consider all such specific
mechanisms of protease suppression by prosequences in the
present review. It is of importance that the structure of pro-

peptides maintaining the precursors inactive largely deter-
mines the functioning of the cognate proteins.

Propeptides can maintain proteases in catalytically inactive
state by at least two mechanisms. The first mechanism can
be exemplified by widely known pancreatic serine proteases
trypsin and chymotrypsin as well as by structurally related
kallikreins. Precursors of all these proteins have a short
N-terminal propeptide, an activation domain stabilizing the
inactive conformation. Proteolytic cleavage of the peptide
bond between precursor residues 15 and 16 (chymotrypsi-
nogen numbering system) induces structural changes in the
molecule resulting in a salt bridge between the new N-ter-
minal amino acid 16 (usually Ile) and the carboxyl group of
Asp194, which leads to the formation of the substrate-bind-
ing site and to enzyme activation (69–73). Although the
catalytic domains are highly similar and the activation mech-
anism is the same, the activation of these enzymes in mam-
mals is regulated in different ways depending on the
structure of their propeptides, primarily the processing sites.

The activation domain of trypsin consists of eight amino
acids with the DDDDK sequence at the C-terminus. This
sequence corresponds to the substrate specificity of entero-
kinase (enteropeptidase), an enzyme realizing highly selec-
tive processing of trypsinogen exclusively after it is released
from the intercellular secretory granules to the duodenum
(74). In addition to the recognition by enterokinase, the
cleavage site structure prevents the precursor hydrolysis by
mature trypsin, which allows a strict control of the active
enzyme in the intestine. This is due to the presence of four
negatively charged amino acids (75) despite a lysine
upstream of the bond to cleave wP1 position according to the
Schechter and Berger nomenclature (76)x. Next, trypsin con-
centration determines the removal of the 15-amino acid pro-
peptide of chymotrypsin, the processing site of which is
much simpler and contains arginine at the P1 position
corresponding to the specificity of the activating enzyme.
Such a structure of the site also makes chymotrypsin resistant
to autoprocessing (77). Thus, the place and sequence of acti-
vation events of pancreatic proteases are determined by the
C-terminal amino acid sequence of the propeptides and
by its exact conformity to the substrate specificity of the
processing enzymes.

The propeptide structure is also important for the activa-
tion of human kallikreins found in diverse tissues and
biological fluids (78). However, the situation is not so unam-
biguous in this case. The processing sites of most kallikreins
contain arginine or lysine at P1 excluding kallikrein 4 with
P1 glutamine (79). The substrate specificity varies between
kallikreins. Kallikreins 2, 4–6, 8, and 12–14 have trypsin-
like substrate specificity (80–83). Kallikreins 1, 10, and 11
can hydrolyze both trypsin and chymotrypsin substrates (81,
84). The substrate specificity of kallikreins 3 and 7 (81) and,
possibly, 9 and 15 is similar to that of chymotrypsin. In con-
trast to pancreatic proteases, this situation allows autopro-
cessing in most cases. This can be significant for the
activation signal amplification and, considering the co-
expression of kallikreins in many tissues, assumes a complex
activation cascade (79, 85) involving other proteolytic
enzymes apart from kallikreins (86).
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Activation peptides are not exclusive for eukaryotic
enzymes. An activation mechanism similar to that of mam-
malian chymotrypsin-like proteases is probably utilized by
some bacterial glutamyl endopeptidases, which belong to the
same structural family. Their precursors have no detectable
proteolytic activity (39); the substrate-binding site is formed
after propeptide removal (87, 88); and the cellular production
of active glutamyl endopeptidases largely depend on the
processing site structure (89, 90).

These examples of the chymotrypsin family of serine pro-
teases indicated that the local modifications in the structure
of the propeptide activation modules can substantially
change the functioning of the corresponding proteins in the
living systems. However, we have already mentioned another
mechanism to maintain proteases in inactive state; moreover,
it can be more common. Many propeptides are inhibitors of
the cognate proteolytic enzymes. The precursors with such
prosequences are inactivated as a result of blocked active site
rather than of changed conformation of the catalytic domain.
This provides for a functional distinction: in the case of acti-
vation modules, a breakage of the covalent bond between the
prosequence and catalytic domain is the only event required
for the activation; whereas in the case of propeptide inhibi-
tors, the noncovalent inhibitory complex should also be
broken.

The inhibition of the cognate propeptide was demonstrated
for many proteases from diverse organisms. Such enzymes
include serine (68, 91–101), cysteine (32, 40, 102–118),
aspartyl (119), and glutamate (120) proteases as well as
metalloproteinases (23, 33, 34, 94, 121–125). The molecular
details of the contacts between propeptide inhibitors and their
cognate proteases significantly vary. Consequently, the inhi-
bition constants also widely vary (Table 1). Apparently, the
realization of biological functions in different proregion-
catalytic domain pairs requires highly different interaction-
forces. However, the effect of many propeptides is highly
selective. The prosequence inhibition of the cognate mature
protease and closely related catalytic domains of other pro-
teins can vary by several orders of magnitude (23, 40, 96,
97, 99, 101, 103, 105–110, 114, 119, 123, 127) and even
involve different mechanisms (96, 127). Mutations in the
propeptides including point mutations can have a profound
impact on inhibition efficiency (32, 100, 101, 120, 127–131).
Overall, this suggests that prosequence modifications can
modulate their inhibitory capacity and, thus, the functioning
of proteolytic enzymes.

Apparently, the main function of propeptide inhibitors is
the same as the function of activation domains: to avoid
undesirable activation of the protease and to provide the
mature enzyme formation in the right place and/or time.
However, it is not easy to obtain data on the effect of altered
inhibitory capacity of propeptides on the function of individ-
ual proteins. On the one hand, this can only be done in vivo
unlike studies on the proper inhibitory effect. On the other
hand, propeptide inhibitors can be folding assistants and
mediate secretion at the same time (9, 23, 27, 46, 91, 122,
127), and it is hardly possible to identify the contribution of
each component to the observed total effect. Nevertheless,

some detailed studies clearly demonstrate the relationship
between the prosequence inhibitory capacity and the func-
tioning of the associated protease.

Pseudomonas aeruginosa elastase (PAE), a zinc-contain-
ing metalloproteinase of the thermolysin structural family, is
encoded by the lasB gene and is synthesized as a prepropro-
tein (132). The presequence is a signal peptide directing the
enzyme through the inner cell membrane (133). The propep-
tide provides for the PAE folding in the periplasm (19, 46),
which leads to proenzyme autocatalytic processing (134).
However, the propeptide not covalently bound to the protein
remains in complex with the catalytic domain (133) and
blocks its proteolytic activity (122). Then, the propeptide-
enzyme complex is secreted and dissociates during or after
the translocation across the outer membrane. In the extra-
cellular space, the propeptide is degraded, apparently, by the
proper PAE (135, 136). Thus, the propeptide folding and
inhibitory activities are separated in this system. After the
folding, the propeptide only inhibits the enzyme activity,
which exposed the effect of the strength of the propeptide-
elastase inhibitory complex on the active enzyme production
by bacteria.

The lasB gene was introduced into Pseudomonas putida
cells but, unexpectedly, no extracellular activity of the
enzyme could be detected (137). Immunoblotting and co-
immunoprecipitation analysis using antibodies against
mature elastase and its propeptide demonstrated that the bulk
of the enzyme is localized in the cell as a noncovalent com-
plex with the propeptide. Thus, the PAE maturation including
protein transport across the inner membrane, folding, and
autocatalytic processing was not affected in P. putida, but no
efficient secretion of the enzyme from the cell took place.
However, substantial elastase quantities were detected in the
extracellular space also in a complex with the propeptide.
Thus, active enzyme was not produced after heterologous
expression owing to a very strong inhibitory complex,
whereby its dissociation probably requires a specific host cell
factor. Point mutations Ala(-15)™Val or Thr(-153)™Ile
destabilized the complex, which resulted in efficient propep-
tide degradation and active extracellular elastase production
with no changes in its maturation, intercellular accumulation,
or secretion rate (130).

Another example illustrating the significance of changes
in the propeptide inhibitory properties for the cognate protein
functioning is tripeptidyl-peptidase I (TPPI), a mammalian
serine protease of the sedolisin family. The enzyme is active
in lysosomes, where it cleaves off N-terminal tripeptides of
small unstructured polypeptides. TPPI is synthesized as a
precursor with a signal peptide and a propeptide (138, 139).
The latter is removed autocatalytically by the intramolecular
mechanism (140). TPPI propeptide proved to be an efficient
inhibitor of the mature enzyme (Table 1) (100). The interest
in this protein is largely due to classic late-infantile neuronal
ceroid lipofuscinosis, a severe hereditary disease caused by
natural mutations in the TPPI gene wreviewed in (141)x. To
date, two of disease-causing mutations have been found in
the prosequence: Gly77™Arg and Ser153™Pro. In vitro
analysis demonstrated that the Gly77™Arg mutation caused
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Table 1 Parameters of inhibition of some proteases by their cognate propeptides.

Protease Ki or IC50
a, nM References

Aspartic/glutamic proteases
Cathepsin D (human) 30 (119)
Aspergilloglutamic peptidase (Aspergillus niger) 27 (120)
Pepsin (chicken) -10 (119)

Serine proteases
Serine protease (Aspergillus fumigatus) 5300 (94)
Subtilisin E (Bacillus subtilis) 540 (92)
Kex2p (Saccharomyces cerevisiae) 160a (98)
Cucumisin (Cucumis melo L.) 6.2 (101)
Proprotein convertase PC1/3 (mouse) 6 (96)
Furin (human) 4a (97)

2 (99)
Tripeptidyl peptidase I (human) 3.55 (100)
Proprotein convertase PC5/6 (human) 0.8 (99)
Subtilisin BPN9 (Bacillus amyloliquefaciens) ;0.5 (93)
Proprotein convertase LPC/PC7/8 (human) 1.3 (99)
Proprotein convertase LPC/PC7/8 (rat) 0.4a (97)
a-Lytic protease (Lysobacter enzymogenes) 0.05–0.2 (91)

Cysteine proteases
Proteinase IV (papaya) 860 (103)
Cathepsin L (Paramecium tetraurelia) 60a (106)

20.9 (126)
Cathepsin V (human) 10.2 (115)
Protease Der p 1 (Dermatophagoides pteronyssinus) 7 (116)
Cathepsin K (human) 5.5 (109)

2.61 (110)
0.630 (40)

Papain (papaya) 1.89 (103)
Cathepsin L1 (Fasciola hepatica) 1.73 (108)
Cathepsin B (rat) 0.4 (102)
Falcipain-2 (Plasmodium falciparum) 0.3 (111)
Cathepsin S (human) 7.6 (109)

2.5 (117)
0.27 (107)
0.05 (32)
0.049 (40, 126)

Cathepsin L (human) 0.12 (109)
0.088 (105)
0.018 (40)

Cruzipain (Trypanosoma cruzi) 0.018 (114)
Metalloproteases

TNF-a-converting enzyme (human) 70a (124)
PA protease (Aeromonas caviae) 69 (34)
Thermolysin (Bacillus thermoproteolyticus) 6 (23)
Metalloprotease (Aspergillus fumigatus) 3 (94)
Carboxypeptidase A (pig) 1.9 (121)
Metalloprotease (Brevibacillus brevis) 0.17 (123)

aIC50 is the concentration of an inhibitor at which half of the maximum enzyme activity is observed.

an 80-fold decrease in the efficiency of propeptide binding
to the TPPI catalytic domain and a significant change in the
inhibition mechanism: in contrast to the intact propeptide, a
slow-binding inhibitor of the enzyme, the mutant propeptide
rapidly reaches equilibrium. In vivo, this mutation leads to a
substantial retention of the proenzyme in the endoplasmic
reticulum, suppresses its secretion, and significantly (almost
10-fold) decreases mature TPPI activity in the lysosomes
(100).

These examples suggest that, similar to folding assistants,
prosequences that maintain the protein in inactive state (both
activation peptides and inhibitors) can modulate the func-
tional activity of the associated proteases. Minor variations
in the propeptides (e.g., point mutations) can change the acti-
vation place and time of the cognate catalytic domains. On
the one hand, this can cause functional disorders; on the
other hand, it is a possible pathway of functional evolution
of proteins.
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Propeptides mediating protein sorting

Propeptides are attributes of most secretory proteases and
numerous publications report their involvement in the sorting
of cognate enzymes in the cell (11, 15, 17–20, 25, 32, 35,
46, 47, 142–164). In some cases, this effect is due to the
requirement of correct protein folding for the translocation
across cell membranes, i.e., to the folding assistant function
of propeptides discussed above. However, the dependence of
protein migration in the cell on the specific interaction
between the prosequence and the sorting system has been
demonstrated for a variety of proteases.

The propeptide-mediated mechanisms of secretion of bac-
terial proteolytic enzymes are not clearly understood. Appar-
ently, the propeptides primarily determine the protein
conformation required for its secretion. Accordingly, the
removal of the prosequence without affecting the signal pep-
tide usually inhibits the secretion (17, 19, 20, 46, 158). It is
of interest that the coexpression of such deletion variants
with the artificial genes encoding for the propeptide fused to
the signal sequence restores protein release from the cell (19,
20, 47). Finer modifications of propeptides also significantly
affect the enzyme secretion by bacteria. For instance, a C-
terminal fragment deletion in the propeptide (23 out of 222
amino acids) delayed the release of Bacillus cereus neutral
proteinase by several hours and decreased the protein pro-
duction by 75% (150). N-terminal deletions in the propeptide
of Streptomyces griseus protease B (4, 10, 15, and 20 out of
76 amino acids) decreased the extracellular protein quantities
by 40–99%; protease secretion correlated with the length of
the propeptide (25). Point mutations in the prosequences can
change active protease quantities in culture medium (159,
163) and lead to the enzyme accumulation in the periplasm
of Gram-negative bacteria (159). Propeptide modifications
can also be positive and increase the secretory protein pro-
duction by the cell (163). Thus, structural changes in pro-
sequences of bacterial proteases can change the secreted
enzyme quantities as well as the time or rate of their release
from the cell.

A demonstrative example of prosequences of bacterial
proteases as a factor of cognate enzyme functioning in vivo
is the propeptide-mediated regulation of Listeria monocyto-
genes metalloproteinase (Mpl) zymogen location during
intercellular infection. This enzyme together with broad-
range phospholipase C (PC-PLC) underlie L. monocytogenes
escape from the vacuole, where the pathogen resides after
the entry into the host cell, to the cytosol (which is crucial
for the bacterial ability to replicate in eukaryotic cells) (165).
In all probability, PC-PLC hydrolyzes phospholipids of the
vacuolar membrane, whereas Mpl controls phospholipase
translocation across the bacterial cell wall. Both enzymes are
synthesized as precursors with N-terminal prosequences. In
both cases, the propeptides hold inactive zymogens at the
membrane-cell wall interface but are not essential for the
formation of active enzymes (164, 166). The colocalization
of the proteins allows the bacterial cell to rapidly release
large quantities of phospholipase. At low pH typical for vac-
uoles, Mpl is autocatalytically activated (167). The metal-

loproteinase processes PC-PLC, which consequently leads to
vacuolar membrane degradation, and L. monocytogenes
escape to the cytosol (166).

Correct three-dimensional structure is also important for
the sorting of eukaryotic proteases. Several publications
demonstrate that deletions or modifications of the folding
assistant propeptide affect protein transport (11, 12, 15, 32,
35, 37, 149, 152, 155, 161). Nonetheless, prosequences of
eukaryotic enzymes can specifically interact with the cellular
sorting factors. For instance, vacuolar sorting signals of yeast
carboxypeptidase Y and proteinase A are within their pro-
peptides (142, 144–146), which directly interact with recep-
tor proteins Vps10p and, probably, Vth1p, factors of protease
localization in the cell (168). pH-dependent procathepsin L
association with the membrane is mediated by 9-amino acid
sequence in the propeptide, which binds to the integral
membrane receptor protein (151, 169). Such interaction is
critical for cathepsin L delivery to lysosomes in primitive
eukaryotes that lack the alternative lysosomal sorting path-
way (170). Neutrophil elastase targeting to the plasma
membrane depends on the C-terminal propeptide (160). The
glycosylation of a specific amino acid in the prosequence of
metalloproteinase ADAMT9 is essential for this enzyme
secretion (161). After cathepsin E propeptide is replaced with
that of cathepsin D, a related lysosomal aspartyl protease,
the chimeric protein retains the capacity to form the catalyt-
ically active enzyme and to be processed; however, it cannot
reach the ultimate destination in the cell (37). Thus, propep-
tide structural modifications in eukaryotic proteases affecting
their sorting signals can alter protein transport in the cell and,
consequently, alter its biological functions.

The modulation of protease functions by the propeptide
can be clearly illustrated by the sorting of human cathepsin
B (CB). Preprocathepsin B consists of a signal peptide, pro-
sequence, and catalytic domain. The signal peptide cotrans-
lationally targets the protein to the endoplasmic reticulum
lumen, after which the signal peptide is removed. CB sorting
to the lysosome follows the mannose 6-phosphate pathway
and depends on the Asn-38 glycosylation in the propeptide
(171) walthough an alternative mechanism was demonstrated
in some cell types (172, 173)x. However, this signal can be
eliminated by alternative pre-mRNA splicing. A total of 13
exons have been identified in the CB gene and several com-
binations of them are possible. Most transcripts differ in the
59- and 39-untranslated regions; however, a transcript encod-
ing an N-terminally truncated cathepsin B (tCB) was found
in the normal and rheumatoid synovial fluids, normal and
osteoarthritic cartilage tissue, and some cancers. Such tran-
script lacks exons 2 and 3. Because exon 3 contains the start
codon in the full-length mRNA, tCB synthesis starts from an
alternative codon corresponding to Met52 in exon 4. Thus,
tCB lacks the signal peptide as well as 34 amino acids of
the propeptide wreviewed in Ref. (174)x. This protein cannot
give rise to the catalytically active form after expression in
eukaryotic cells (38) and it is targeted to mitochondria (175)
rather than to lysosomes (171). An amphipathic a-helix of
the propeptide serves as the mitochondrial sorting signal,
which becomes N-terminal and functionally active after the
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removal of 51 amino acids (175). Cell culture transfection
with a construct encoding tCB causes their death with nucle-
ar fragmentation indicative of apoptosis (171, 176). It was
proposed that the truncated procathepsin B provides for a
physiological mechanism of cell death in tissues with slow
turnover and populated by long-lived cells (174). These data
illustrate another way of propeptide-mediated modulation
through the cellular synthesis of enzymes with different pro-
sequences, which cardinally change protein functioning.

A remarkable example of a principally different propep-
tide-mediated mechanism of protein transport control is the
sorting of a part of cathepsin L (CL), a lysosomal protease,
to the nucleus, where this enzyme processes nuclear proteins
and, thus, mediates cell cycle regulation. CL targeting in the
cell changes as a result of alternative translation giving rise
to enzyme isoforms without the signal peptide, which pre-
vents protein transport to the endoplasmic reticulum and
activates an unidentified nuclear localization signal. The
alternative translation is initiated at any of six (in murine
CL) methionine codons in the propeptide portion of the
mRNA. Thus, the propeptide structure can allow CL nuclear
sorting, although the propeptide is not directly involved in
it. A modification of one of several methionine codons
changes the quantities of nuclear isoforms and a substitution
of all of them blocks CL sorting to the nucleus (177). Hence,
in this case, changes in the prosequence structure also have
an impact on protease functioning in the cell.

Thus, propeptides involved in sorting can modulate func-
tional properties of the cognate proteases. Mutations in the
prosequences can substantially change cell localization of the
proteins and modify their functional properties. The available
examples demonstrate evolutionary emergence of systems
where this propeptide property gives rise to enzymes with
alternative biological activity based on the same catalytic
domain.

Propeptides providing for precursor interaction with

other molecules or supramolecular structures

An increasing number of publications indicate that protease
propeptides can interact with other partners apart from the
associated catalytic domain or components of the cell secre-
tion system. These data are not yet abundant and the molec-
ular details as well as the role of such interactions remain
largely unclear. However, the examples discussed below sug-
gest that the propeptide capacity to bind a wide range of
molecules and supramolecular structures is highly important
for the functioning of cognate proteins.

The in vivo action of proteases is not always determined
solely by their catalytic activity. They can also serve as
ligands, whereby binding to receptor induces a specific cel-
lular response. Such dual effect is probably best studied in
the model of cathepsin D, a lysosomal aspartyl protease syn-
thesized as a precursor with the N-terminal propeptide, an
inhibitor of the mature enzyme and a factor of protein folding
and sorting. Procathepsin D (pCD) secreted by cancer cells
proved to be a mitogenic factor (178–185) and this effect of
pCD did not depend on proteolytic activity (180, 183, 186,
187). Experimental data indicate that pCD binds to the sur-

face of tumor cells (188, 189), which suggests pCD inter-
action with an unidentified signaling receptor (190).
Nonetheless, both binding and mitogenic potential of pCD
is determined by the prosequence (180, 183, 188, 191).
Moreover, the propeptide per se stimulates tumor cell growth
in vitro and in vivo (180–185, 188, 192, 193). The ability to
bind receptors is also observed in the propeptide of cathepsin
X (CX), a lysosomal cysteine protease with a high expression
level in the immune system (194–196) and cancer cells (197,
198). The propeptide of CX contains an RGD sequence
unique for lysosomal cysteine proteases. This motif provides
for the CX binding to integrin aVb3, which suggests that CX
in the extracellular space can modulate the migrating cell
adhesion to extracellular matrix components (199). The
interaction with intestinal alkaline phosphatase (IAP) and
heat shock cognate protein 70 (HSC70) was demonstrated
for the propeptide of cathepsin C (CC), another lysosomal
cysteine protease, which is actively produced in intestinal
epithelial cells. The expression of CC propeptide in Caco-2
cells that share properties with small intestinal epithelial cells
proved to decrease IAP activity associated with its degra-
dation. Because the HSC70 interaction is an essential stage
in chaperone-mediated lysosomal protein degradation, CC
propeptide in a complex with HSP70 and IAP was proposed
to stimulate IAP sorting to the lysosome (162).

Current experimental data are supplemented by sequence
analysis demonstrating that protease propeptides can contain
conserved binding domains found in many other proteins
apart from proteases. For instance, such domains are found
in the C-terminal regions of precursors of thermolysin-like
proteases (TLPs). These regions are usually missing in
mature enzymes and, thus, belong to the prosequences. Not
much is currently known about the function of C-terminal
propeptides of TLPs. Still, the available data and compara-
tive analysis of conserved domains in the C-terminal regions
of TLPs and other enzymes suggest their involvement in the
enzyme binding to insoluble proteins and polysaccharides
and, probably, target the proteins to the bacterial cell surface
(200).

The propeptides underlying the precursor interaction with
other molecules can play a key role in protein functioning
as illustrated by caspases. These intracellular cysteine pro-
teases, substantial control factors of cell death, proliferation,
and inflammation, are synthesized as precursors with N-ter-
minal extensions (N-peptides) cleaved off in most mature
caspases, which allows them to be considered as classical
propeptides. The prodomains underlie the interaction of
precursors of apoptotic initiator caspases and inflammatory
caspases with their activation platform, a protein complex
assembled in response to an apoptotic signal. This interaction
leads to the formation of the active dimeric caspase and,
eventually, underlies specific physiological effects. Caspase
prosequences vary in structure and contain domains respon-
sible for the specific binding to adapter molecules in the
corresponding activation platform. For instance, the propep-
tides of apoptotic initiator caspases 8 and 10 interacting with
the death inducing signaling complex contain two death
effector domains (DEDs) each. The prosequences of inflam-
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matory caspases 1, 4, and 5, which are activated on the
inflammasomes, contain the caspase recruitment domain
(CARD). wThe classification and structure of caspases as well
as the mechanisms of their activation and maturation have
been reviewed in detail elsewhere (201, 202).x The ability of
caspases to be activated in response to specific signals
depends on their propeptides. A replacement of the prodo-
main of caspase 8 with the N-peptide of caspase 9 results in
the activation of the hybrid enzyme on the apoptosome, the
activation platform of caspase 9, which convincingly con-
firms this conclusion (203).

Thus, propeptides can have an effect on the functioning
of cognate proteases through the interaction with various
molecules and supramolecular complexes. In this context,
there are indications that the biological properties of a pre-
cursor can substantially differ from the properties of the
mature protein and, particularly, can be unrelated to catalytic
activity. In this case, the mechanisms regulating the balance
between the precursor and mature enzyme are not just the
control mechanisms of the enzyme activation, as a balance
shift towards the precursor or mature enzyme can trigger
different biochemical pathways. However, it remains unclear
if protease propeptides have any independent role in vivo
after their detachment from the precursor. The available data
support this possibility although it is not confirmed directly.
It should be noted that different functional properties of the
precursor and mature protein are not limited to proteolytic
enzymes. For instance, such differences as well as the func-
tions of autonomous prosequence-derived peptides have been
demonstrated in neurotrophins wreviewed in Refs. (204,
205)x.

Propeptide variation

The above data convincingly demonstrate that propeptides to
a significant extent determine protease functioning in vivo
and that propeptide modification has a considerable impact
on the biological properties of the cognate proteins. The con-
sidered examples suggest that the modulating capacity of the
prosequences can underlie a specific evolutionary mecha-
nism altering biological properties of proteins with minimal
changes in their major functional domains. This is further
confirmed by the comparison of precursor sequences in the
enzyme with related catalytic domains.

Sequence analysis of precursors within protease families
demonstrates a much higher heterogeneity of propeptides
compared to the catalytic domains. For instance, mature bac-
terial chymotrypsin-like enzymes have similar size and
38–63% identical amino acids, whereas the propeptide
lengths vary from 76 to 162 amino acids and their identity
vary from 23% to 49%, which is approximately 15% lower
(206). In contrast to the catalytic domains, caspase propep-
tides also significantly vary in size (16–219 amino acids)
and contain different recruiting domains (see above) (201).
Mammalian proprotein convertases are another example of
this kind: in contrast to the highly conserved catalytic
domains (54–70% identity to furin amino acid sequence),

their prosequences are more variable (36–51% identity to
furin) (207). A lower sequence conservation of propeptides
relative to mature enzymes is clearly demonstrated by our
analysis of full-length TLP precursor sequences (200). All
proenzymes of the family have N-terminal propeptides and
one-third of them also have C-terminal propeptides. Amino
acid sequence identity never drops below ;40% in mature
TLPs, whereas many propeptides have no significant simi-
larity. The N-terminal prosequences split into two non-
homologous groups. The C-terminal extensions are highly
variable: they are 110–670 amino acids long and contain at
least 10 unrelated conserved domains (also found in diverse
groups of proteins) combined in more than a dozen patterns.
Thus, the rate of propeptide evolution is higher compared to
the corresponding catalytic domains.

The higher variation rate relies on the propeptide tolerance
to mutations. Indeed, modifications even of the most con-
served amino acids or deletions of prosequence fragments
often do not lead to a complete loss of the enzyme functional
activity (90, 127, 131, 159, 208–210). Propeptide replace-
ment with that of another member of the group or their par-
tial replacement with foreign sequences can have no effect
on the enzyme folding and processing (37, 210–215).

The changes in propeptide structure in vivo are realized in
two ways. First, the prosequence can evolve together with
the mature part, although at a higher rate of mutations. Sec-
ond, the propeptide structure can substantially change as a
result of shuffling of domains from different not necessarily
related proteins. For instance, the N-terminal propeptides in
TLPs accumulate mutations together with the protease
domain, whereas domain shuffling seems to be the main
mechanism of C-terminal prosequence modification (200).
The shuffling mechanism can also underlie the structure of
caspase propeptides with DED and CARD domains, which
are also found in other apoptotic proteins (216).

It is of interest that protease prosequences can sometimes
disconnect from the catalytic domain to become encoded by
a separate gene and to acquire a separate cellular function.
Protein inhibitors of proteolytic enzymes homologous to pro-
tease prosequences were found in different organisms. Five
such inhibitors were identified for papain-like cysteine pro-
teases: murine cytotoxic T-lymphocyte antigens CTLA-2a

and CTLA-2b (217–219), Bombyx mori cysteine protease
inhibitors BCPIa and BCPIb (220–222), and Drosophila
melanogaster D/CTLA-2 or cer protein (223, 224). These
inhibitors seem to be important regulation factors of cysteine
protease activity in animals, and their effect is significant for
memory functioning (225–227) and embryogenesis (228,
229). Comparative analysis of the genomic localization as
well as the exon-intron structure of genes coding for cysteine
protease inhibitors in mouse and Drosophila suggested that
the CTLA-2 and D/CTLA-2 genes originated after the dupli-
cation of fragments of the cathepsin L (217, 230) and pro-
tease CP1 (223) genes, respectively. Propeptide-like
inhibitors of serine subtilisin-like proteases have also been
found: Pleurotus ostreatus proteinase A inhibitor 1 (POIA1)
(231) and yeast proteinase B inhibitor 2 (232). The subtilisin
model was used to demonstrate that POIA1 can function as
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a folding assistant (233). As no strict correlation exists
between the inhibitory and folding functions of subtilase pro-
peptides (234), their combination can point to the emergence
of this inhibitor after the duplication of the cognate protease
gene as in the case of CTLA-2 and cer protein.

Thus, the propeptides are relatively independent elements
that allow the functional activity of proteases to be modified
without significant changes in the catalytic domains. The
capacity to retain their functional properties after substantial
structural changes underlies high prosequence variation.
Overall, the propeptides can be considered as evolutionary
modules extending the functional diversity of proteins.

Propeptides and protein engineering

The modulating capacity of propeptides can be used as a tool
in protein engineering. The term ‘prosequence engineering’
was proposed for the approach to modify an enzyme func-
tional activity by introducing mutations in the propeptide
rather than in the catalytic domain (235). Several strategies
were proposed within the frame of this approach. The first
strategy relies on the protein memory phenomenon discussed
above. It consists of producing protease conformers with
altered properties resulting from point mutations in the pro-
peptide. The second strategy consists of modifying the proc-
essing site in the prosequence to improve the autocatalytic
removal of the propeptide. This can provide for the matu-
ration or increase the yield of mature proteases synthesized
in heterologous systems or of proteases with changed prop-
erties. This strategy can also be used to generate proteases
with modified substrate specificity. The third strategy con-
sists of the shuffling of prosequences or their parts from
homologous proteases, which can give rise to proteins with
new properties (as in the case of point mutations) and mod-
ulate the rate of propeptide degradation and, hence, the rate
of catalytically active molecule production. Prosequence
engineering is expected to construct proteases with altered
substrate specificity, high activity, and high stability (235).

Prosequence engineering was successfully used to con-
struct Streptomyces griseus protease B (SGPB) with modi-
fied substrate specificity. SGPB propeptide is removed
autocatalytically, and the efficient processing requires the
correspondence between the C-terminal amino acid of the
prosequence at the P1 position relative to the hydrolyzed
bond and the substrate specificity of the enzyme. The wild-
type SGPB prefers large hydrophobic residues and has Leu
at this position. No maturation takes place without this cor-
respondence. Thus, a proper point mutation at the processing
site makes it possible to select a mature active protease with
modified substrate specificity from the library containing
numerous enzymes with modified catalytic domain. This
approach was successfully used to screen an Escherichia coli
expression library containing nearly 30 000 SGPB mutants.
In the case of Met at P1, a protease with substantially
increased specificity towards substrates with Met has been
selected; Val at P1 yielded a protease with wide substrate
specificity; whereas P1 Phe (intact SGPB efficiently hydro-

lyzes substrates with this amino acid) gave rise to an enzyme
with elevated thermostability (236).

One more achievement of prosequence engineering is the
increased extracellular production of B. subtilis subtilisin-like
thermostable protease WF146 by E. coli cells. After random
mutagenesis of the N-terminal propeptide, two selected point
mutations in the prosequence, Leu(-57)™Gln and Glu
(-10)™Asp, provided a 3-fold increase in the extracellular
protein production. The enzyme with the mutant propeptide
demonstrated accelerated maturation relative to the wild-type
protein, and no significant changes in the thermostability and
catalytic properties were observed (163).

Another approach to employ the modulating properties of
propeptides is to use them as specific protease inhibitors. The
most attractive examples of this kind demonstrate anticancer
activity of propeptides, e.g., furin propeptide. The processing
of cancer-associated precursor proteins by furin is important
for the acquisition of malignant phenotype and metastatic
potential of tumor cells. The proregion of furin inhibits
enzyme activity with a low nanomolar inhibition constant
(Table 1), which suggests its anticancer activity. Indeed, the
expression of furin propeptide cDNA in tumor cells or their
incubation with the corresponding protein was associated
with a significant reduction in tumor cell proliferation,
migration, and invasion. These data advance propeptides as
a new basis for anticancer drug development (237). Another
demonstrative example is the development of pest-resistant
plants with a transgene encoding an appropriate propeptide.
The significance of extracellular proteases in the pest and
pathogen interaction with the plant is well known, and their
selective inhibition is considered as a strategy to control her-
bivorous insects, parasitic nematodes, and pathogenic
microorganisms. Protease propeptides were proposed as a
promising source of inhibitors in this context (95, 112, 113,
238). For instance, the expression of a prosequence of cys-
teine protease of soybean cyst nematode (Heterodera gly-
cines) in the soybean roots has a pronounced protective
effect: the development of female nematodes decelerates and
the number of females (by 31%), the number of eggs per
female (by 58%), and the female size decrease (239).

Discussing propeptides as a bioengineering tool, one can-
not omit the modification of protein properties through the
development of their artificial precursors, zymogens. No
experiments of this kind on proteolytic enzymes have been
published to date, although proteases largely synthesized as
precursors inspire such studies (240). Apparently, ribonucle-
ase A zymogen was the first artificial precursor. It was con-
structed by the insertion of a linker connecting the N- and
C-termini of the enzyme, closing the active site, and con-
taining a specific site of plasmepsin II hydrolysis. The new
N- and C-termini were generated by circular permutation.
The zymogen was 1000 times less active than the processing
protease-treated enzyme, the catalytic properties of which
were similar to those of native RNase A (240). The same
approach was used to construct a promising antiviral agent,
RNase A precursor activated by NS3 protease of the human
hepatitis C virus (241).

The generation of an artificial zymogen of adenosine
diphosphate ribosyl transferase is another example of this
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kind. This B. cereus enzyme also known as the vegetative
insecticidal protein 2 (Vip2) in combination with another B.
cereus protein Vip1 is toxic towards the larvae of the western
corn rootworm (WCR), a major pest of corn in the United
States. Vip2 is an intracellular toxin that modifies actin,
which suppressed its polymerization and microfilament net-
work formation. Vip1 provides for Vip2 entry into the euka-
ryotic cell through the interaction with the cell surface (242).
The Vip1-Vip2 system looks very promising for WCR con-
trol. However, Vip2 introduced into the plant causes severe
developmental pathology and substantial phenotype changes.
This problem was solved by the generation of an artificial
Vip2 precursor inactive in maize cells but activated in the
digestive system of WCR larvae. Random propeptide library
was introduced to the C-terminus of Vip2, and the variants
with low cytotoxic activity were selected in yeast. The
expression of the resulting proVip2 (with a 49 amino acid
propeptide) had no effect on maize development and
phenotype. Nonetheless, the prosequence was efficiently
removed in the WCR digestive system, which activated the
enzyme. Feeding the larvae with proVip2 and Vip1 caused
100% death after 72 h (243).

Thus, propeptides are an attractive protein engineering tool
that allows protein properties to be modified without affect-
ing the structure of the key functional domains. Moreover,
an artificial prosequence can be inserted de novo, which can
impart absolutely new properties to the protein. In a way,
prosequence engineering reproduces the natural evolutionary
process. However, propeptide-mediated modification of pro-
tein functional activity is not widely used at present, which
can be attributed to insufficient knowledge of the mecha-
nisms of propeptide functioning.

Expert opinion

The majority of proteolytic enzymes are synthesized as pre-
cursors containing propeptides. The function and mecha-
nisms of action of protease prosequences were actively
studied in past two decades and the results are summarized
in several reviews (2, 3, 5, 41–43, 206, 244, 245). However,
analysis of propeptides is usually limited to two main issues:
their involvement in protein folding and cell protection from
undesirable protease activity through the rigid control of the
time and location of protease activation.

In the present review, we considered all known functions
of propeptides and attempted to demonstrate that propeptides
modulate protease functional activity irrespective of the spe-
cific mechanism of their action. Propeptide modifications,
sometimes minor, can substantially alter protein functioning
in living organisms. This modulating activity coupled with
high variation allows us to consider propeptides as specific
evolutionary modules underlying modifications in protease
biological properties without significant changes in the high-
ly conserved catalytic domains. Although it remains beyond
the scope of this review, it should be stressed that pro-
sequence-mediated modulation of protein function is not lim-
ited to proteases or even enzymes was is clearly exemplified

by neurotrophins mentioned above (204)x, suggesting that it
is a universal phenomenon of the living world.

Outlook

It is beyond question that the data on the structure and func-
tions of propeptides (in proteases as well as other proteins)
will continue to accumulate. New data on the three-dimen-
sional structure of the precursors, functional properties of
propeptides of individual proteins in vivo and in vitro, as
well as on protein partners of propeptides will inevitably
uncover new specific biochemical mechanisms. However,
the experimental data available to date make it clearer that
the mechanisms of action and biological functions of pro-
peptides are extremely diverse, and there is no clear bound-
ary between propeptides and constituent protein domains.

In this context, the concept proposed in this review con-
sidering propeptides as evolutionary modules and transient
protein domains can be fruitful for the identification of future
research trends. The propeptide capacity to modulate the bio-
logical functions of proteins is the primary concern here.
Knowledge of the function of individual prosequences and
their interaction with cognate protein domains is not suffi-
cient to understand the mechanisms of propeptide-mediated
evolution. Disembodied studies on individual molecules
should be replaced with systemic studies considering both
physicochemical and biological aspects in groups of related
proteins in taxonomically close organisms (or even the same
organism) but with different propeptide structure.

Highlights

• Most proteases and many other proteins are synthesized
as precursors containing propeptides.

• The main propeptide functions include: assistance in cog-
nate protein folding, inhibitor/activation peptide function,
sorting, and interaction with other molecules or supra-
molecular structures.

• The same propeptide can have several functions men-
tioned above.

• Irrespective of the propeptide specific function and mech-
anism of action, its structure alterations can modulate
functional properties of the protein.

• The propeptide structure is much less conserved com-
pared to the cognate catalytic domains.

• The combination of modulatory activity and high varia-
tion makes propeptides specific evolutionary factors
changing biological properties of proteins without signif-
icant modifications on the highly conserved functional
(e.g., catalytic) domains.

• Propeptide engineering based on their modulatory activity
can be used to generate artificial proteins with desired
properties.

• Further studies of prosequences can focus on groups of
related proteins functioning in taxonomically close organ-
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isms (or even in the same organism) but with different
propeptide structure.
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