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Abstract

The Aurora are a conserved family of serine/threonine
kinases with essential functions in cell division. In mitosis,
Aurora kinases are required for chromosome segregation,
condensation and orientation in the metaphase plate, spindle
assembly, and the completion of cytokinesis. This review
presents the Aurora kinases, their partners and how their
interactions impact on the different mitotic functions.
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Introduction

Aurora kinases are key players in mitosis and are proposed
as attractive targets in cancer therapy. Moreover, they are
over-expressed in a wide range of human cancers (1, 2).

The Aurora kinase family is composed of three members
in mammals, Aurora-A, Aurora-B, and Aurora-C whereas for
other metazoans, including the frog, fruit fly and nematode,
only Aurora-A and Aurora-B kinases are known (3). The
fungi, Saccharomyces cerevisiae and Schizosaccharomyces
pombe, have a single Aurora kinase, known as increase-in-
ploidy 1 (Ipl1) and Aurora-related kinase 1 (Ark1), respec-
tively. Furthermore, whereas the Aurora-A family is ubi-
quitous among all vertebrates, the Aurora-B and Aurora-C
families arose from a gene duplication event in mammals.
Dictostelium Aurora kinase has properties of both kinases A
and B and might represent the ancestral kinase (3).

Aurora-A and -B are ubiquitous key players in mitosis
whereas Aurora-C function is less documented and seems to
be testis specific (4).

Aurora kinases: structure/function

Aurora kinases are monomeric enzymes of approximately
40 kDa constituting large oligomers with specific partners.

Three domains compose each protein kinase: a divergent N-
terminal domain, a large conserved catalytic domain and a
short C terminal sequence. Aurora kinases are short-lived
proteins degraded by the proteasome via the anaphase-pro-
moting cyclosome complex (APC/c) pathway (5, 6). Both
Aurora-A and -B kinases encompass degradation boxes in
their sequences. However, the C-terminal D-box (RXXL) of
Aurora-A is required for its destruction but the KEN box is
not (5). Conversely, the degradation of Aurora-B does not
depend on its D-boxes (RXXL), but it does require intact
KEN boxes and A-boxes (QRVL) located within the first 65
amino acids (6). The similarities and complementarities of
kinases A and B were illustrated recently by mutational
approaches when simultaneously Hans et al. (7) and Fu et
al. (8) showed that a single amino acid change (G128N)
within the catalytic domain converts Aurora-A into Aurora-
B-like kinase in terms of partner specificity and cellular
function. Formerly, the equivalent residue in Xenopus Auro-
ra-A (G205) was described as a key determinant of both
intrinsic activity and regulation by TPX2 (9).

Despite their structural similarities, the two proteins A and
B have unique spectra of binding partners and of phospho-
rylation substrates (Table 1).

Function and localization of Aurora-A

Aurora-A kinase, also known as Aik, BTAK, or STK15, is
suspected to be an oncogenic kinase and its gene is located
at 20q13, a region that is frequently amplified in cancer.
Aurora-A kinase expression rises during G2 and peaks in
early mitosis wreviewed in (44)x. Aurora-A localizes to the
centrosomes in G2 and is also present on the mitotic spindle
in mitosis. Moreover, Aurora-A null mouse embryos show
severe defects at 3.5 d.p.c. (days post-coitus) morula/blas-
tocyst stage and lethality before 8.5 d.p.c (45). Null embryos
at 3.5 d.p.c. reveal growth retardation with cells in mitotic
disarray manifesting disorganized spindle, misaligned and
lagging chromosomes as well as micronucleated cells. This
study provides the unequivocal genetic evidence for an
essential physiological role of Aurora-A in normal mitotic
spindle assembly, chromosome alignment segregation and
maintenance of viability in mammalian embryos (45). Actu-
ally, Aurora-A mediates all these complex functions through
its interactions with partners and by cross-talk with other
kinases (Figure 1 and Table 1A and B). In G2 and early
mitosis, Aurora-A strictly localizes on centrosomes and its
targeting requires centrosomal kinases, such as Pak1, Plk-1
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Table 1 Aurora-A and -B partners.

Substrate Interactor Co-factors Function

Part A Aurora-A(T288) TPX2 Maximal activity of Aurora-A (10)
AurKAIP1 GSK-3b Degradation of Aurora-A (11)
HEF1 Activation of Aurora-A (centrosome

amplification) (12)
TPX2 TPX2 (Ser 204) Plk1 Localization of Aurora-A to centrosome (13)

Activation of Aurora-A (14)
Spindle length/MT nucleation from chromosome

Plk1 (T210) Bora Bora G2/M entry activation of Cdk1, liberation of
Aurora-A and recruitment of TPX2 (15)

Xl-p53 (S129/190) TPX2 Stabilization of p53 (Met II meiosis) (16)
H-p53 (S315) Ubiquitination by Mdm2 and proteolysis (17)

Cyclin B1 Stabilization of Cyclin B (prevents APC
interaction) (18)

Cdc25B (S553) Activation cdk1-cyclin B1/G2-M transition (19)
Lats 2 (S83) Centrosomal localization Lats 2 kinase (20)
Hs-TACC3/ MAP215 Interaction microtubule-associated-proteins
maskin (S558) (dynamic of spindle pole MT) (21)
D-TACC1(S863) Stabilization of centrosome-associated

microtubules (22)
HDAC6 HEF 1/Cas- Primary cilium disassembly

L (NEDD9) (microtubule deacetylation) (23)
D-Par 6 Numb Neuronal polarity/asymmetric division (24)

Spindle orientation
Part B

Aurora kinase A CenP-A (S7) Localization of Aurora-B
(prerequisite for Aurora-B phosphorylation) (25)

Aurora kinase B CenP-A (S7) Mitosis ongoing/cytokinesis completion (26)
Aurora kinase A INCENP g-Tubulin nucleation (27)
Aurora kinase B INCENP CPC Localization of Aurora-B (28)

(TSS893-895) Activation of Aurora-B, checkpoint function
Aurora kinase A MCAK (Xl-S196, Xl-S719) Spindle bipolarity (29)
Aurora kinase B MCAK Kinetochore microtubule dynamic/

(Xl-S196, Xl-T95) recruitment of MCAK on chromatin (30)
Aurora kinase A EB3 (S176) SIAH1 complex Microtubule dynamics (31)

EB3 stabilization
Aurora kinase B EB3 (S176) SIAH1 complex Microtubule dynamics (31)

EB3 stabilization
Part C Aurora-B (T232) INCENP CPC Maximal activity (32)

Histone H3 (S10) Chromosome alignment (33)
Survivin (T117) CPC Sgo2 Anaphase onset and cytokinesis (34, 35)
Op18/stathmin (S16) Spindle assembly (36)

TD60 Microtubules CPC localization/haspin activation (37)
Ce-Tousled Chromosome segregation (38)
kinase

Ndc80 (S55, S62) Mis12 complex Correction improper kinetochore-microtubule
connections (39)

Hs-Mis13 (S100-S109) Kinetochore function/recruitment of
Ndc80/Hec1 (40)

MgcRacGap (S387) Kinesin 6 Cytokinesis (41)
Kinesin 6: Zen4/ MgcRacGap Cytokinesis completion (42)
MKLP1 (S708)

TACC1 Cytokinesis (43)

The list is not exhaustive and only major interacting proteins and substrates are listed; those identified only in vitro are omitted. For each
partner, the main corresponding functions as well as their potential co-factors are indicated. Interactors: interact directly with the kinase
whereas co-factors are indirect players. The phosphorylated residue is indicated when clearly identified.
Part A: Exclusive Aurora-A partners. TPX2, microtubule associated protein; AurKAIP1, Aurora-A kinase interacting protein 1; HEF1, focal
adhesion scaffolding protein; Plk1 polo-like kinase 1, Lats2, a novel serine/threonine kinase, member of the Lats kinase family that includes
the Drosophila tumour suppressor lats/warts; TACC, transforming acidic coiled-coil; MAP, microtubule associated protein; HDAC, histone
deacetylase; NEDD9, neural precursor cell expressed, developmentally down-regulated 9; Par-6, partitioning defective 6 homolog alpha, a
regulatory subunit of atypical protein kinase C (aPKC); Xl: Xenopus laevis; D, Drosophila and Hs, Homo sapiens.
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Table 1 (Continued)

Part B: Aurora-A and -B partners. CenP-A, Centromeric Protein A; CPC, Chromosomal Passenger Complex; INCENP, INer CENtromeric
Protein; MCAK, Mitotic Centromere-associated Kinesin; EB3, microtubule plus-end tracking protein; SIAH-1, ubiquitin-protein isopeptide
ligase.
Part C: Exclusive Aurora-B partners. Sgo2, shugoshin 2; TD60, telophase disc-60 kDa, a member of the RCC1 family; Ndc 80, complex
composed of Ndc80/H-Hec, Nuf2, Spc24, and Spc25 and is an essential core element of kinetochores; Mis 12 and Mis13, MIND kinetochore
complex component; Mis12, Ndc80/Hs-Hec and KNL-1 form the KMN network, the core microtubule-binding site of the kinetochore;
MgcRacGap, Rac GTPase activating protein; TACC1, transforming, acidic coiled-coil containing protein 1.

and Cdk-11 (13, 46, 47). Aurora-A functions as an anchor
protein for the recruitment of additional pericentriolar pro-
teins such as chTOG/MAP215, g-tubulin, TACC3 and Lats
2 (20–22). During G2, the main cofactor is hBora; Aurora-
A, in complex with hBora, phosphorylates Plk1 at Thr-210
and Cdc25B at Ser-353 (15, 19). Activated Plk1 phospho-
rylates Cdc25C and Wee1 and in turn, promotes mitotic entry
wTable 1; (15)x. Plk1 and Aurora-A signalling functions are
mutually dependent in G2 during recovery from DNA dam-
age (13, 48).

During mitosis, Bora interacts with phospho-Plk1, liber-
ates Aurora-A and the free Aurora-A kinase recruits TPX2,
a microtubule interacting protein. TPX2 is the best known
coactivator of Aurora-A, inducing the active conformation of
the kinase, its targeting to the mitotic spindle while inhibiting
its inactivation by PP1 (13, 49). In human cells, the inter-
action between TPX2 and Aurora-A is required for micro-
tubule nucleation from chromosomes and therefore for
building a spindle of the correct length (50, 51). The sup-
pression of Aurora-A by small interfering RNA or its inhi-
bition by antibodies caused multiple events to fail in mitosis,
such as incorrect separation of centriole pairs, misalignment
of chromosomes on the metaphase plate, and incomplete
cytokinesis (52). Huck et al. have shown that inhibition of
Aurora-A resulted in both apoptosis and senescence in
tumour cells (53).

Function and localization of Aurora-B

Aurora-B with INner CENtromere Protein (INCENP), Sur-
vivin and Borealin form the chromosomal passenger com-
plex (CPC) wreviewed in (54)x. Chromosomal passenger
proteins are mostly absent in the interphase. They are pres-
ent, in the nucleus, in late G2 phase and their expression
peaks in G2/M. The CPC is characterized by a peculiar local-
ization during mitosis (Figure 1). In prophase, passenger pro-
teins associate along the length of the condensing
chromosomes and gradually concentrate at centromeres. At
prometaphase and metaphase, CPC accumulates in the inner
centromere. At anaphase onset, it leaves the chromosomes
and is transferred to the central spindle in association with
microtubules. Finally, passenger proteins are concentrated in
the midbody during cytokinesis (Figure 1). Impairment of
any CPC unit leads to similar behaviour: failure of locali-
zation of the other CPC and mitotic delay; The functional

interdependence is explained by the intertwined structural
interactions described by Jeyaprakash et al. (55). Within the
complex, Aurora-B kinase is the only enzymatic member.

During mitosis, Aurora-B phosphorylates several sub-
strates including chromosomal proteins such as CENP-A and
Histone H3 (26, 32), microtubules associated proteins
(MCAK, Stathmin; MKPL-1, etc.) as well as its partners
within the CPC (see Table 1B and C). Both Survivin and
INCENP are substrates of Aurora-B and in turn, they activate
the kinase (56–58). For example, INCENP binds to Aurora-
B and induces an intermediate state of activation by stabiliz-
ing an open conformation of the catalytic site of the kinase.
INCENP becomes phosphorylated and phospho-INCENP
generates the fully active kinase (58). Borealin is also an
activator through its phosphorylation by Mps-1 (59). How-
ever, the localization and the activity of Aurora-B depend on
a functional CPC. Furthermore, microtubules and TD60, a
RCC1 guanine nucleotide exchange factor, are also described
as co-factors (36) and, the presence of TLK-1 wTousled
Kinase 1; (38)x and the activation of Chk1 (60) modulate the
activity of Aurora-B (Figure 1 and Table 1B and C). By
contrast, MST1 (mammalian sterile 20 like kinase 1) limits
the activity of Aurora-B to promote stable kinetochore-
microtubule attachment (61).

In cells, the inhibition of Aurora-B kinase or the invali-
dation of any passenger protein leads to similar phenotypes
(37, 62): delay in mitotic progression and kinetochore-spin-
dle mis-attachments (Figure 1). Chromosomes fail to align
on the mitotic plate owing to improper chromosome spindle
attachments and cells exit from mitosis by premature silenc-
ing of the spindle checkpoint. Aurora-B kinase controls thus
the establishment of the mitotic spindle, kinetochore tension
and the activation of the spindle checkpoint. At the meta-
phase to anaphase transition the relocation of Aurora-B
kinase and the CPC from centromeres to the central spindle
require both the kinesin MKlp2 and Aurora-B activity (63,
64). On the central spindle Aurora kinase contributes to
proper cytokinesis through phosphorylation of MgcRacGAP
and kinesin 6 (40, 41). Recently Aurora-B kinase and the
CPC were found to participate to a checkpoint called NoCut
that prevents abscission until all chromosomes are pulled out
of the cleavage plane (65).

Cells treated with Aurora inhibitors progressed through
mitosis with misaligned chromosomes and exited without
cytokinesis. Upon such a mitotic abortion, cells are polyploid
and exhibit irregular lobed nuclei (66). Therefore passenger
protein inhibition prevents at least cell expansion. Cells with
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Figure 1 Involvement of Aurora kinases and their partners in mitosis.
The different phases of mitosis are represented by immunofluorescent images. Aurora-B is portrayed in green, Tubulin in red and DNA in
blue. The involvement of each kinase in the different phases is portrayed by colour arrows: blue for Aurora-A and red for Aurora-B. Aurora-
A interacts with Bora, is regulated by Pak and Cdk11, and, phosphorylates Plk1 inducing in turn, mitosis onset. Then, Aurora-A drives
maturation of the centrosomes, interacts with TPX2 and participates in the formation of the mitotic spindle. By contrast, Aurora-B in the
inner centromere within the chromosomal passenger proteins (INCENP, Survivin and Borealin) participates in chromosome congression,
corrects microtubule mis-attachments and allows chromosome alignment on the metaphasic plate. Aurora-B is regulated by the presence of
TD-60, microtubules and the kinases Chk1, Tlk-1 and MST1; A cross-talk exists indirectly with Plk1 that phosphorylates INCENP and
with Mps 1 which modifies Borealin. Finally, the CPC is transferred to the central spindle and concentrates on the midbody. For mitosis
progression, cells have to turn off several checkpoints (CP): (1) the G2 CP controlling genome integrity and preventing entry in mitosis
with DNA damage; (2) the spindle CP that controls tension across kinetochores; and finally (3) NoCut ensures that cytokinesis completes
only after all chromosomes have migrated to the poles. The three CP indicated by green lights are under the control of Aurora kinases.

intact checkpoint function arrest with 4N DNA content, those
with compromised checkpoint function are more likely to
undergo endoreduplication followed by eventual apoptosis.
The integrity of the p53-p21Waf1/Cip1–dependent postmi-
totic checkpoint governs thus the response to Aurora kinase
inhibition (67).

Regulation of the Aurora-B kinase activities

and consequences for the CPC

Although Aurora kinases and their partners are well
described, and their key roles in mitosis undisputable, the

modulation of activities are poorly documented. Aurora
kinases belong to the AGC kinase group but their architec-
ture and regulatory mechanisms are only partly described
(58). It is established that both Aurora-A, -B kinases are
autophosphorylated (Table 1A and C) and, that their accurate
localizations depend on their activity (10, 66, 68). In the
presence of inhibitors or dominant negative kinase Aurora-
B localized on centromere but progressively fused on the
whole chromatin as revealed by time-lapse experiments (66,
68, 69).

In the past, a main question was to elucidate the interre-
lation between Aurora-B kinase activity and tension across
kinetochores. Recently, Liu et al. have elegantly solved this
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Figure 2 Aurora-B kinase is immobilized in the inner centromere.
In the upper part of the figure, the expression and localization of the CPC are illustrated in green. The results of dynamic experiments, in
live cells, are indicated in the centre (33, 71). The proteins found immobile by FRAP are represented in green whereas the mobile counterpart
is in red. Survivin is mobile on the chromosome and then immobile on microtubules whereas other CPC members are always found to be
immobile. The lower part of the figure demonstrates the tension across centromeres and the progressive separation of the sticky kinase from
its substrates (72); the consequence probably being the establishment of a gradient of phosphorylation of Aurora-B substrates.

question (70). By using FRET-based bio-sensors and playing
with the targeting of Aurora-B, these authors have estab-
lished that the spatial separation of Aurora-B kinase from
kinetochore substrates senses chromosome bi-orientation. In
the absence of tension, kinetochore substrates such as
MCAK in the vicinity of the kinase are phosphorylated and
have therefore low affinity for microtubules (Figure 2). Kine-
tochore-microtubules attachments are thus destabilized. Con-
versely, when tension is exerted, kinetochore substrates are
pulled away from the kinase, their phosphorylation decreases
and microtubules are stabilized around kinetochores (Figure
2). In line with this, Aurora-B kinase activity does not
require any modulation and can remain maximal during
mitosis but, its localization is essential for its correct func-
tion. Our study of CPC by FRAP (fluorescent recovery after
photobleaching) reveals that Aurora-B and its docking part-
ner INCENP are fully immobile in prometaphase and met-

aphase wFigure 2; (34, 71, 72)x. Although these data are
controversial, the immobilization of the kinase in the inner
centromere fits perfectly with this spatial regulation of its
function (71, 73, 74). Other conclusions that could be drawn
from FRAP experiments are the peculiar role of Survivin
within the CPC and the existence of different conformation
for the complex. Survivin is mobile until anaphase onset and
then is stuck to its partners when the complex is transferred
to microtubules (72). The binding of INCENP to microtubule
might either induce a conformational change within the CPC
or recruit a new partner that prevents Survivin movements.
The structure of the core CPC complex reveals that the helical
domain of Survivin forms a tight three helical bundle with
Borealin and INCENP (55). This situation might reflect the
microtubule bound CPC because specific residues for spindle
localization were noted at the molecular surface of the crystal
and could thus account for the immobilization of Survivin.
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Importance of Aurora kinase on cell cycle

checkpoints

Aurora kinases interfere directly or indirectly with three cell
cycle checkpoints from G2 to mitosis exit (Figure 1). As
described before, Aurora kinase A is involved in mitosis
entry through Bora and Plk1 and it was also reported that
both Aurora kinases A and B are inhibited upon DNA dam-
age (75, 76); they therefore participate at least indirectly to
the G2/M checkpoint (13). Aurora-B kinase is a main reg-
ulator of the spindle assembly checkpoint (SAC) that triggers
anaphase onset and protects cells from aneuploidy. The SAC
is turned on until all the chromosomes are bi-oriented to the
two different poles (77). A new checkpoint, named NoCut
Checkpoint was recently described (65, 78, 79). It delays the
completion of cytokinesis in response to anaphase defects.
NoCut was first identified in yeast and depends on both
Aurora-B kinase and the anillin-related proteins Boi1 and
Boi2 that act as abscission inhibitors (78). NoCut monitors
clearance of chromatin from the midzone to ensure that cyto-
kinesis completes only after all chromosomes have migrated
to the poles (79) and Aurora-B is part of a sensor that
responds to unsegregated chromatin at the cleavage site (65).
The direct or indirect control of the three checkpoints by
Aurora kinases is an additional proof of the huge importance
of these kinases during the cell cycle.

Which Aurora kinase is the better drug target?

This question is still open because the interrelations between
Aurora-A and -B are complicated and not well understood
(80). During cycle progression, A is implicated first, in G2,
and then B is involved upon mitosis entry. However, the
inhibitors exhibiting a broad specificity indicate an Aurora-
B inhibition phenotype, in the cells (66, 81). Moreover, the
Aurora-A inhibition phenotype is still not observed with
these inhibitors, in the Aurora-B mutant cells (81). In fact,
cells resistant to ZM447439 were selected and although the
resistance was unambiguously attributed to Aurora-B, these
cells were also found to be resistant to pan-Aurora inhibitors
(81). Several explanations could be proposed; among them
might be an Aurora-A function partially disconnected from
its catalytic activity, the misidentification of the real target
for some of these inhibitors or the prerequisite of Aurora-B
inhibition for A impairments. Therefore, the balance for tar-
geting is mostly in favour of Aurora-B but this point will be
solved in the near future because several drugs are under
clinical trials wfor reviews see (82, 83)x. It is too early to
evaluate the impact of this targeting and to draw conclusions
whether specificity among Aurora kinases is a benefit or a
drawback. Some of the molecules have already been used
successfully in leukaemia-resistant tumours but the benefit
could be accredited to the inhibition of off-targets such as
mutated bcr-Abl (84). Preclinical data report that the classical
cancer treatment (paclitaxel, radiation, topoisomerase poi-
son) enhances the effect of Aurora-B kinase inhibitors (85).
These inhibitors represent, therefore, a real hope in cancer

therapy. However, taking into account the identification of
Aurora-like homologues in various organisms (fungi, plants,
Trypanosoma brucei, etc.) broader applications could be con-
sidered (86).

Importance of Aurora kinases in germinal

lineages

In addition to their mitotic functions, the three kinases are
involved in germinal cells and seems crucial during meiosis.
Aurora-A localizes to the spindle poles during meiosis I and
II whereas Aurora-B associates with chromosomes after ger-
minal vesicle breakdown, is concentrated on kinetochores at
metaphase I and on the spindle midzone at late anaphase I
(87, 88). In mouse oocytes, Aurora kinase A is a crucial
component of MTOC (microtubule organizing centres)
involved in resumption of meiosis, MTOC multiplication,
spindle formation as well as metaphase I to II transition.
Aurora kinase C expression appears to be testis specific (4).
Remarkably, Aurora-C null mice are viable but the males
exhibit compromise fertility. These recent descriptions shed
light on the importance of Aurora kinase in the fertilization
process. In fact, Aurora-B expression is altered in aged
oocytes and, in humans, a homozygous mutation of Aurora
kinase C yields large-headed polyploid spermatozoa and
causes male infertility (89). A functional Aurora-C protein
is necessary for male meiotic cytokinesis whereas its absence
(Aurora-C c.144delC mutation) does not impair oogenesis
(90).

In conclusion, Aurora kinases have a key role in both
mitosis and meiosis. In this review, their direct partners are
described, but Aurora kinases are also included in complex
structures such as the centrosome (Aurora-A) and the inner
centromere (Aurora-B). Numerous proteins are present in
these structures and their arrangement is not fully resolved.
In the near future, the definition of the interfaces between
inner and outer centromeres and centromere/kinetochore and
so on is expected to progress with high-resolution fluorescent
microscopy techniques.

Acknowledgements
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