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Abstract

The Musashi family is an evolutionarily conserved group of
RNA-binding proteins. In mammal, two members of the
group, Msi1 and Msi2, have been identified to date. Msi1 is
considered to play roles in maintaining the stem cell status
(stemness) of neural stem/progenitor cells in adults and in
the development of central nervous system through transla-
tional regulation of its target mRNAs, which encode regu-
lators of signal transduction and the cell cycle. Recently,
strong expression of Msi1 in various somatic stem/progenitor
cells of adult tissues, such as eye, gut, stomach, breast, and
hair follicle, has been reported. The protein is also expressed
in various cancer cells, and ectopically emerging cells have
been found in neural tissues of patients with diseases involv-
ing neural disorder, including epilepsy. Many novel target
mRNAs and regulatory pathways of Msi1 have been reported
in recent years. Here, we present a review of the functions
and action mechanisms of Msi1 protein and discuss possible
directions for further study.
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Introduction

Recent findings demonstrate that post-transcriptional events,
e.g., splicing, export, stabilization, localization, and transla-
tion, play an important role of life system and are highly
orchestrated by various RNA-binding proteins (1). The
Musashi family is a conserved group of RNA-binding pro-
teins, which regulates translation of target mRNAs specifi-
cally (2, 3). The Musashi protein was originally identified as
a regulator of asymmetrical division of sensory organ pre-
cursor cells in Drosophila (4). Subsequent studies established
that Musashi is an RNA-binding protein bearing two typical
RNA recognition motifs, and that it specifically binds to a
sequence in the 39 untranslated region (UTR) of tramtrack69
(ttk69) mRNA (5); this binding prevents translation of ttk69

mRNA, causing asymmetric cell division (6, 7). Thereafter,
its mammalian homologs, Musashi1 (Msi1) and Musashi2
(Msi2), were found in mice (8, 9). Many Musashi and
Musashi-like proteins have since been discovered in various
multicellular animals, and overall the primary structure and
expression pattern are highly conserved among them
(10–16). Strong expression of Msi1 protein was observed in
the nervous systems of vertebrates (17). In the central nerv-
ous system (CNS) of mouse, Msi1 protein is expressed in
undifferentiated neural stem/precursor cells (NS/PCs) at the
embryonic and adult stages (8, 17, 18). Molecular biological
studies revealed that in mouse Msi1 in these cells controls
the Notch signaling pathway through translational reduction
of the m-Numb protein, an inhibitor of the Notch pathway,
and thereby maintains the stem/progenitor cell status (19).
Interestingly, expression of Msi1 was also observed in many
types of somatic stem cells in adult tissues, e.g., eye (20),
intestine (21), stomach (22), mammary gland (23), and hair
follicle (24). Furthermore, significant expression of the pro-
tein was observed in proliferative cell populations of tumor
tissues (25–27). This suggests a relationship between Msi1
and tumorigenesis. Although the above studies have indicat-
ed that the control of the Notch signal by Msi1 is important
for stem cell maintenance (19), details of the molecular
mechanisms and signaling network of Msi1 remain unclear.
Recently, some novel target mRNAs, regulatory pathways,
and functions of Msi1 have been identified, which could
throw some light on these questions. In this review, we pres-
ent an overview of the Musashi proteins, particularly mam-
malian Msi1, and consider possible directions for further
research.

Discovery of the Musashi protein and its

translational regulatory function

In loss-of-function experiments in Drosophila, Nakamura et
al. found that the musashi gene is essential for asymmetrical
division of sensory organ precursor cells, which are precur-
sors of the ectodermal system common to both neural and
non-neural cell lineages (4). In wild-type insects, a sensory
organ precursor cell divides into a non-neural precursor cell
and a neural precursor cell, whereas in musashi mutants two
non-neural precursor cells are produced instead. The sym-
metrically divided non-neural precursor cells differentiate to
hair-forming cells, leading to a double-bristle phenotype,
instead of the single-hair wild-type phenotype.

Further studies revealed that the Musashi gene product,
which is an RNA-binding protein, introduces neural differ-
entiation potential for one daughter cell of the sensory organ
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precursor cell by selective translational repression of mRNA
of a neural differentiation inhibitory factor (a transcription
repressor possessing a BTB domain and zinc finger domains)
called ttk69 (7). The ttk69 protein acts downstream of Notch
as a determinant of non-neural identity. To identify specific
target RNA motifs of the Musashi protein, Okabe et al.
employed the in vitro selection method (SELEX method) (7)
to address a synthesized random sequence RNA library. They
found that the Musashi protein binds to sequences containing
two or three (GUU«UAG) or (GUU«UG) repeats (7). It
became clear that the ttk69 mRNA contains 15 of these motif
sequences in the 39UTR, and it was confirmed that the
Musashi protein binds to the 39UTR of ttk69 mRNA and
inhibits translation of a reporter gene linked to the 39UTR in
vitro (7).

Musashi proteins maintain neural stem cells

Drosophila Musashi protein is also expressed in the com-
pound eye primordium (6), in CNS (4), and in NS/PCs of
larval brain (4), which have many characteristics in common
with mammalian NS/PCs (29). Thus, to elucidate the func-
tions of the Musashi gene family in mammals, a homolog
search and immunohistochemical studies were performed in
mice.

Two homolog genes, musashi1 (msi1) (8) and musashi2
(msi2) (9), were discovered in the mouse genome. Analyses
showed strong expression of Msi1 in NS/PCs of the peri-
ventricular area (8, 17, 18). Thus, Msi1 can be used as a
marker of NS/PCs in CNS of a variety of vertebrates. Indeed,
such cells were identified in the adult human brain by using
this approach (30). Detailed immunohistochemical analyses
revealed that Msi1 is strongly expressed in the ventricular
zone of the neural tube in embryo and in neurogenic sites
within the postnatal brain, including the subventricular zone
(SVZ), olfactory bulb, and rostral migratory stream (18).
Msi1 protein is expressed in NS cells and progenitor cells
within these tissues and is rapidly downregulated in post-
mitotic neurons (8). Mouse Msi2 protein is also a member
of the Musashi family, displaying more than 90% homology
with Msi1 protein in the RNA-binding domain (9). Its
expression pattern in the CNS is very similar to that of Msi1.
However, Msi2 is also continuously expressed in a subset of
neuronal lineage cells, such as parvalbumin-containing
GABA neurons in the neocortex and neurons in several
nuclei of the basal ganglia (9).

To find target RNAs of Msi1 in mammals, a SELEX anal-
ysis was performed, as had been done in Drosophila, and
the results revealed that the mouse Msi1 protein binds spe-
cifically to RNAs that possess a (G/A)UnAGU wns1–3x
sequence (19). A survey for the motif in mRNAs expressed
in the embryonic CNS highlighted the 39UTR of m-numb
mRNA (31) as a candidate for the target. Subsequent exper-
iments revealed that m-munb mRNA is a specific binding
target of Msi1 protein in vitro and in vivo, and its translation
is repressed by Msi1 protein (19, 32). The m-numb protein
binds to the intracellular domain of Notch protein and inhib-

its the Notch signaling pathway (33), which positively reg-
ulates neural stem cell self-renewal (34–36). Kobayashi et
al. reported that oscillation of expression of the Hes1 gene,
a downstream target of Notch, controls the differentiation of
embryonic stem cells to neural cells (37). Taken together,
these results indicate that Msi1 protein maintains stem cell
status by enhancing the Notch signal through translational
repression of m-numb. Indeed, Msi1 protein induces transac-
tivation of the Hes1 gene (19, 38). Thus, although the target
mRNAs of mammalian and Drosophila Musashi protein dif-
fer, both proteins contribute to maintaining stem/progenitor
cell status by translational repression of target mRNA.

By contrast, the function of Msi2 protein is still unclear,
though it is known that Msi1 and Msi2 have similar RNA-
binding specificity (9). The results of an Msi1 and Msi2
double-knockout experiment implied that these proteins have
mutually complementary functions (39).

Somatic stem cells and Msi1 protein function

Recently, mammalian Msi1 protein expression was identified
not only in CNS but also in other tissues and organs (Table
1). Raji et al. showed that Msi1 is produced in mouse eyes
from embryonic stages until adulthood, and is also expressed
in several unexpected sites, including the corneal epithelium
and endothelium, stromal keratocytes, progenitor cells of the
limbus, equatorial lens stem cells, differentiated lens epithe-
lial cells, and differentiated lens fibers (20). A later study
indicated that Msi1 knockout results in degeneration of pho-
toreceptors and loss of visual cycle protein RPE65 in the
microvilli of retinal pigment epithelium cells, which express
Msi1 protein in wild-type animals (40). This could imply that
Msi1 has an essential function for vision. Msi1 is also a
marker of stem/progenitor cells in murine intestinal tissue,
being located in the intestinal crypt, the putative location of
stem cells (21, 41, 42). Recently, Murayama et al. observed
that constitutive expression of Mis1 in intestinal epithelial
cells suppressed expression of Paneth cell-specific genes,
even though there was no significant effect on cell prolifer-
ation or on the Notch and Wnt signaling pathways (44).
Using a similar strategy, Msi1 protein was detected in the
isthmus/neck region of stomach, which is also a putative
location of stem cells (22, 45). Furthermore, as well as other
stem/progenitor cells, putative human breast stem cells were
discovered in the mammary gland using specific antibodies
for Msi1 and p21WAF1 (23). Wang et al. found that much
more committed progenitor cells in the mammary gland also
express Msi1 protein, although luminal and myoepithelial
progenitor cells do not express it (47). Likewise, Sugiyama-
Nakagiri et al. reported that Msi1 and Msi2 are expressed in
the epidermis and hair follicles of mice from E14.5 until
adulthood (24). They hypothesized that Musashi proteins
could have a function in hair cycle progression. Overall,
expression of the Msi1 protein appears to be an effective
marker for stem/progenitor cells in various tissues and is
considered to regulate the stem cell status of cells.
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Table 1 Msi1 expression in mammal tissues excluding CNS.

Tissue Region or cells Age Species References

Eye Corneal epithelium, corneal endothelium, stromal E12.5 Mouse Raji et al. (20)
keratocytes, progenitor cells of the limbus, equatorial – Susaki et al. (40)
lens stem cells, differentiated lens epithelial cells, Adult
differentiated lens fibers, retinal pigment epithelium cells

Gut Small intestinal crypt, colon crypt, columnar cells, Embryo Human, Kayahara et al. (41)
epithelial cells stage mouse, Nishimura et al. (42)

– chicken Potten et al. (21)
Adult Asai et al. (15)

Samuel et al. (43)
Murayama et al. (44)

Stomach Luminal compartment of the mucosa, isthmus/neck region, Embryo Rat, Nagata et al. (45)
fetal pyloric gland stage mouse, Akasaka et al. (22)

– chicken Asai et al. (15)
Adult Murata et al. (46)

Mammary gland Epithelial cells Adult Human, Clarke et al. (23)
mouse

Hair follicle Keratinocyte E14.5 Human, Sugiyama-Nakagiri et al. (24)
– mouse

Adult

Msi1 and diseases

Several reports suggest that Msi1 is involved in various dis-
eases. A disease of great relevance to Msi1 is cancer, because
many carcinoma cells are of epithelial stem cell lineage (48),
expressing Msi1 protein. Strong expression of the Msi1 pro-
tein has been observed in many tumors, such as glioma (25),
hepatoma (26), colorectal adenoma (27, 49), teratoid/rhab-
doid tumors in eye (50), non-small cell lung cancer (51),
retinoblastoma (52), medulloblastoma (53, 54), ependymoma
(53), endometrial carcinoma (55), neurocytoma (56), glio-
blastoma (57), cervical carcinoma (58), etc. Although the
exact function of Msi1 in these cancer cells remains unclear,
knockdown of Msi1 by using siRNA resulted in tumor
growth arrest in colon adenocarcinoma xenografts transplant-
ed in athymic nude mice, reduced cancer cell proliferation,
and increased apoptosis (59). These results suggest an impor-
tant potential role of Msi1 in tumorigenesis and proliferation
of tumors. It is known that some tumors express Msi2 pro-
tein, together with Msi1 (52). This could indicate a comple-
mentary role of the two proteins in tumors.

Other reports indicate that Msi1 is relevant to neuro-
degenerative disorders, such as Alzheimer’s disease. Ectopic
expression of Msi1 was observed in the hippocampus of Alz-
heimer’s disease patients (60), whereas a significant decrease
of Msi1-expressing cells was observed in the SVZ of patients
(61). Although it is difficult to explain these phenomena at
present, the function of Msi1 in maintaining stemness of the
NS/PCs might play a role in the pathogenesis of the disease.

Recently, Oki et al. report upregulation of Msi1 expression
in collapsed nervous system tissue arising from a blood
circulation defect. In ischemic striatum induced by middle
cerebral artery occlusion (MCAO), an increase in Msi1-
immunoreactivity was observed in reactive astrocytes from

2 days after MCAO, persisting until 14 days. The prolifer-
ation of Msi1-positive cells was observed from 4 days after
MCAO and reached a peak at 7 days (62).

Interestingly, Msi1 protein-expressing cells are increased
in the hippocampus of mesial temporal lobe epilepsy
(MTLE) patients (63). Large numbers of Msi1-positive cells
were also observed in the SVZ in these patients (63).
Increased neurogenesis has been reported in animal models
of MTLE (63). Abnormal proliferation of such Msi1-
expressing neural progenitors in hippocampus might cause
epilepsy.

Current insights into the functions of Msi1

Recently, the molecular mechanism of translational repres-
sion by the Msi1 protein has been uncovered. Kawahara et
al. identified poly(A)-binding protein (PABP) as an Msi1-
binding protein, and found that Msi1 competes with elF4G
for PABP binding on its target mRNAs (Figure 1) (32). By
contrast, Charlesworth et al. found a novel function of
Musashi in Xenopus oocytes: it activates translation of
mRNA of mos (64), which is a gene related to meiotic cell
cycle progression (65). This is a conflicting result from pre-
vious findings on the translational effect of Msi1. However,
in human oocytes, a parallel physiological phenomenon is
controlled by other machinery instead of the Musashi homo-
log proteins (66). In other words, although Musashi family
proteins are highly conserved among vertebrates, their pre-
cise roles might be species-dependent. Examination of the
evolutionary conservation of the 39UTR of target mRNAs
will be an important point in analysis of the regulatory net-
work of RNA-binding proteins.
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Figure 1 Schematic representation of the function of Musashi1.
Musashi1 interacts with the 39UTR of its target mRNA and PABP, and subsequently inhibits translation initiation by competing with eIF4G
for PABP. These sequential events inhibit formation of the 80S ribosome complex.

Until recently, only a few direct target mRNAs of mammal
Msi1 (19, 67) had been reported. de Sousa Abreu et al. per-
formed an RNA immunoprecipitation (RIP)-Chip assay in
HEK293T cells to identify the target mRNAs comprehen-
sively (68). They identified a group of 64 mRNAs, whereby
the genes belong to two main functional categories pertinent
to tumorigenesis: (i) cell cycle, proliferation, differentiation,
and apoptosis and (ii) protein modification. Interestingly,
subsequent proteomics study revealed that Msi1 can have not
only negative but also positive effects on gene expression
for some of the targets (68). This is consistent with the
results in Xenopus oocytes (64).

Our group also performed an in vitro screening analysis
to detect specific binding targets of Msi1 controlling the stem
cell status of NS cells. We succeeded in finding a novel
target mRNA of Msi1, doublecortin (dcx), from an mRNA
library of embryonic mouse brain tissue (69). dcx is a gene
related to migration of newborn neurons and neural devel-
opment, and mutation in this gene cause an X-linked domi-
nant disorder characterized by classic lissencephaly with
severe mental retardation and epilepsy in hemizygous males
and subcortical laminar heterotopia, also known as double
cortex syndrome, associated with milder mental retardation
and epilepsy, in heterozygous females (70–72). The Msi1
protein specifically bound in vitro to the 39UTR region of
the mRNA, which contains an Msi1 binding motif, and
repressed translation of a reporter gene linked to the mRNA
fragment (69). We hypothesize that the Msi1 protein prevents
inappropriate migration of NS cells through translational
inhibition of the dcx gene. Several findings support our
hypothesis: firstly, the Dcx protein is expressed only in neu-
ronal precursors just differentiated from NS/PCs (73); sec-
ondly, mutually exclusive ‘protein’ expression of Msi1 and
Dcx in human brain was observed (63); and thirdly, knockout
of Musashi family genes reduced the number of neurospheres
isolated from embryonic mouse brains, whereas knockdown

of dcx prevented migration of cells from neurospheres, leav-
ing their structure intact (74). In addition, we have also found
another candidate Msi1-binding mRNA, which is related to
neuronal migration and axon outgrowth (unpublished data).
Thus, Msi1 might repress the maturation of NS/PCs to neu-
rons through direct translational inhibition of genes that
influence neuronal maturation and migration.

The precise mechanism through which the function of
Msi1 is controlled remains unclear. Although Wang et al.
proposed that the Msi1 protein is involved in both Notch and
Wnt signaling pathways as a novel autocrine process (45,
75), details of the mechanism remain unclear and direct reg-
ulators of Msi1 have not been identified. By contrast, Ratti
et al. reported post-transcriptional regulation of Msi1 mRNA
by ELAV, an RNA-binding protein of Drosophila (76). This
is an interesting result, because it could imply that some type
of cascade of post-transcriptional regulation contributes to
neurogenesis, in addition to other machinery, i.e., signal
transduction, transcriptional regulation, and post-translational
modification.

Expert opinion and outlook

The Musashi family is a highly conserved RNA-binding
protein group. Drosophila Musashi protein and its mouse
homolog, Msi1, work as translational repressors of specific
target mRNAs including ttk69, m-numb, and p21WAF1. The
Msi1 protein is expressed in stem/progenitor cell lineages of
various tissues and organs. The physiological function of the
Msi1 is considered as a key to the maintenance of the stem-
ness of stem/progenitor cells. Although recent studies have
revealed that a Notch signal inhibitor, m-numb, and a cell
cycle regulator, p21WAF1, are direct targets of Msi1, and the
machinery involved is located in the context of both the
Notch and Wnt signaling pathways (75), the details remain
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Figure 2 Multiple pathways to maintain stem/progenitor cell states by Musashi1.
Translational inhibition of various targets genes by Musashi1 might maintain the stem/progenitor cell states syntagmatically.

to be uncovered. RIP-Chip analysis identified many candi-
dates for the target mRNAs of Msi1, and the translation of
some of them was activated by Msi1 protein (68). These
results appear to be in opposition to previous findings that
Msi1 represses the translation of its targets (32) and imply
the existence of another molecular machinery that activates
translation of targets. Components of this machinery, e.g.,
binding proteins of Msi1, need to be clarified comprehen-
sively by means of high-throughput techniques (77–79).

By contrast, we also found a candidate target mRNA of
Msi1 (69), which is expressed specifically in young neurons
just differentiated from NS/PCs (73). This suggests that
screening studies using generic cultured cells, such as
HEK293T, would be insufficient to find targets specifically
expressed in stem/progenitor cells in tissues. Isolated somatic
stem/progenitor cells or tissues which contain these types of
cells should be used as biological sources for screening stud-
ies to find target mRNAs. We speculate that Msi1 might have
specific targets in each cell type or site, such as dcx, in addi-
tion to the previously discovered targets, which are related
to cell cycle, proliferation, and self-renewal (Figure 2). In
silico screening for target mRNAs, based on the motif search
and 2D structure prediction (80), could also be an alternative
or complementary approach, as well as other high-through-
put screening methods for protein-RNA interactions (68, 81,
82).

Finally, cooperation and division of roles between Msi1
and Msi2 proteins should be elucidated to fully understand
the physiological functions of the Musashi family.
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